Pages

Tuesday, 21 February 2017

Chapter 28 Exercise 19, Introduction to Java Programming, Tenth Edition Y. Daniel LiangY.

28.19 (Display a DFS/BFS tree in a graph) Modify GraphView in Listing 28.6 to
add a new data field tree with a set method. The edges in the tree are dis-
played in red. Write a program that displays the graph in Figure 28.1 and the
DFS/BFS tree starting from a specified city, as shown in Figures 28.13 and
28.16. If a city not in the map is entered, the program displays an error mes-
sage in the label.


import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.ArrayList;
import java.util.List;

import javax.swing.*;

public class Exercise19 extends JApplet {

 private static final long serialVersionUID = 1L;
 
 private City[] vertices = { new City("Seattle", 75, 50),
   new City("San Francisco", 50, 210),
   new City("Los Angeles", 75, 275), new City("Denver", 275, 175),
   new City("Kansas City", 400, 245), new City("Chicago", 450, 100),
   new City("Boston", 700, 80), new City("New York", 675, 120),
   new City("Atlanta", 575, 295), new City("Miami", 600, 400),
   new City("Dallas", 408, 325), new City("Houston", 450, 360) };

 private int[][] edges = { { 0, 1 }, { 0, 3 }, { 0, 5 }, { 1, 0 }, { 1, 2 },
   { 1, 3 }, { 2, 1 }, { 2, 3 }, { 2, 4 }, { 2, 10 }, { 3, 0 },
   { 3, 1 }, { 3, 2 }, { 3, 4 }, { 3, 5 }, { 4, 2 }, { 4, 3 },
   { 4, 5 }, { 4, 7 }, { 4, 8 }, { 4, 10 }, { 5, 0 }, { 5, 3 },
   { 5, 4 }, { 5, 6 }, { 5, 7 }, { 6, 5 }, { 6, 7 }, { 7, 4 },
   { 7, 5 }, { 7, 6 }, { 7, 8 }, { 8, 4 }, { 8, 7 }, { 8, 9 },
   { 8, 10 }, { 8, 11 }, { 9, 8 }, { 9, 11 }, { 10, 2 }, { 10, 4 },
   { 10, 8 }, { 10, 11 }, { 11, 8 }, { 11, 9 }, { 11, 10 } };

 private Graph<City> graph = new UnweightedGraph<City>(edges, vertices);
 private GraphView graphView = new GraphView(graph);
 private JTextField jTextField = new JTextField(10);
 private AbstractGraph<City>.Tree tree = null;
 public Exercise19() {
  setLayout(new BorderLayout(5, 5));
  add(graphView, BorderLayout.CENTER);
  JPanel jPanel1 = new JPanel();
  jPanel1.add(new JLabel("Starting City"));
  jPanel1.add(jTextField);
  JButton jButton1 = new JButton("Display DFS Tree");
  jPanel1.add(jButton1);
  JButton jButton2 = new JButton("Display BFS Tree");
  jPanel1.add(jButton2);
  add(jPanel1, BorderLayout.SOUTH);
  jButton1.addActionListener(new ActionListener() {   
   @Override
   public void actionPerformed(ActionEvent e) {
    String cityName = jTextField.getText();
    tree = null;
    List<City> list = graph.getVertices();
    for (int i = 0; i < list.size(); i++) {
     if(cityName.equals(list.get(i).name)) {
      tree = graph.dfs(i);      
      break;
     }
    }
    graphView.repaint();
   }
  });
  
  jButton2.addActionListener(new ActionListener() {   
   @Override
   public void actionPerformed(ActionEvent e) {
    String cityName = jTextField.getText();
    tree = null;
    List<City> list = graph.getVertices();
    for (int i = 0; i < list.size(); i++) {
     if(cityName.equals(list.get(i).name)) {
      tree = graph.bfs(i);
      break;
     }
    }
    graphView.repaint();
   }
  });
 }
 
 class GraphView extends javax.swing.JPanel {
  private static final long serialVersionUID = 1L;
  private Graph<? extends Displayable> graph;

  public GraphView(Graph<? extends Displayable> graph) {
   this.graph = graph;
  }

  @Override
  protected void paintComponent(java.awt.Graphics g) {
   super.paintComponent(g);

   // Draw vertices
   java.util.List<? extends Displayable> vertices = graph
     .getVertices();
   for (int i = 0; i < graph.getSize(); i++) {
    int x = vertices.get(i).getX();
    int y = vertices.get(i).getY();
    String name = vertices.get(i).getName();

    g.fillOval(x - 8, y - 8, 16, 16); // Display a vertex
    g.drawString(name, x - 12, y - 12); // Display the name
   }

   // Draw edges for pair of vertices
   for (int i = 0; i < graph.getSize(); i++) {
    java.util.List<Integer> neighbors = graph.getNeighbors(i);
    int x1 = graph.getVertex(i).getX();
    int y1 = graph.getVertex(i).getY();
    for (int v : neighbors) {
     int x2 = graph.getVertex(v).getX();
     int y2 = graph.getVertex(v).getY();

     g.drawLine(x1, y1, x2, y2); // Draw an edge for (i, v)
    }
   }
   
   if(tree != null) {
    g.setColor(Color.RED);
    for (int i = 0; i < tree.parent.length; i++) {
     if (tree.parent[i] != -1) {
      int length = 20;
      int x0 = vertices.get(i).getX();
      int y0 = vertices.get(i).getY();
      int x1 = vertices.get(tree.parent[i]).getX();
      int y1 = vertices.get(tree.parent[i]).getY();
      double angle1 = Math.atan2(y1 - y0, x1 - x0);
      g.drawLine(x1, y1, x0, y0);
      
      double angle2 = Math.toRadians(Math.toDegrees(angle1) + 30);
      int x2 = (int)(x0 + Math.cos(angle2) * length);
      int y2 = (int)(y0 + Math.sin(angle2) * length);      
      g.drawLine(x0, y0, x2, y2);
      
      double angle3 = Math.toRadians(Math.toDegrees(angle1) - 30);
      int x3 = (int)(x0 + Math.cos(angle3) * length);
      int y3 = (int)(y0 + Math.sin(angle3) * length);      
      g.drawLine(x0, y0, x3, y3);
      
     }
    }
   }

  }
 }

 static class City implements Displayable {
  private int x, y;
  private String name;

  City(String name, int x, int y) {
   this.name = name;
   this.x = x;
   this.y = y;
  }

  @Override
  public int getX() {
   return x;
  }

  @Override
  public int getY() {
   return y;
  }

  @Override
  public String getName() {
   return name;
  }
  
  @Override
  public String toString() {
   return name;
  }
 }

 public static void main(String[] args) {
  JFrame frame = new JFrame("Exercise19");
  Exercise19 applet = new Exercise19();
  frame.add(applet);
  applet.init();
  applet.start();

  frame.setLocationRelativeTo(null);
  frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
  frame.setSize(800, 500);
  frame.setLocationRelativeTo(null);
  frame.setVisible(true);
 }

 interface Displayable {
  public int getX(); // Get x-coordinate of the vertex

  public int getY(); // Get y-coordinate of the vertex

  public String getName(); // Get display name of the vertex
 }

 static class UnweightedGraph<V> extends AbstractGraph<V> {
  /** Construct an empty graph */
  public UnweightedGraph() {
  }

  /** Construct a graph from edges and vertices stored in arrays */
  public UnweightedGraph(int[][] edges, V[] vertices) {
   super(edges, vertices);
  }

  /** Construct a graph from edges and vertices stored in List */
  public UnweightedGraph(List<Edge> edges, List<V> vertices) {
   super(edges, vertices);
  }

  /** Construct a graph for integer vertices 0, 1, 2 and edge list */
  public UnweightedGraph(List<Edge> edges, int numberOfVertices) {
   super(edges, numberOfVertices);
  }

  /** Construct a graph from integer vertices 0, 1, and edge array */
  public UnweightedGraph(int[][] edges, int numberOfVertices) {
   super(edges, numberOfVertices);
  }
 }

 static abstract class AbstractGraph<V> implements Graph<V> {
  protected List<V> vertices = new ArrayList<V>(); // Store vertices
  protected List<List<Integer>> neighbors = new ArrayList<List<Integer>>(); // Adjacency
                     // lists

  /** Construct an empty graph */
  protected AbstractGraph() {
  }

  /** Construct a graph from edges and vertices stored in arrays */
  protected AbstractGraph(int[][] edges, V[] vertices) {
   for (int i = 0; i < vertices.length; i++)
    this.vertices.add(vertices[i]);

   createAdjacencyLists(edges, vertices.length);
  }

  /** Construct a graph from edges and vertices stored in List */
  protected AbstractGraph(List<Edge> edges, List<V> vertices) {
   for (int i = 0; i < vertices.size(); i++)
    this.vertices.add(vertices.get(i));

   createAdjacencyLists(edges, vertices.size());
  }

  /** Construct a graph for integer vertices 0, 1, 2 and edge list */
  @SuppressWarnings("unchecked")
  protected AbstractGraph(List<Edge> edges, int numberOfVertices) {
   for (int i = 0; i < numberOfVertices; i++)
    vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...}

   createAdjacencyLists(edges, numberOfVertices);
  }

  /** Construct a graph from integer vertices 0, 1, and edge array */
  @SuppressWarnings("unchecked")
  protected AbstractGraph(int[][] edges, int numberOfVertices) {
   for (int i = 0; i < numberOfVertices; i++)
    vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...}

   createAdjacencyLists(edges, numberOfVertices);
  }

  /** Create adjacency lists for each vertex */
  private void createAdjacencyLists(int[][] edges, int numberOfVertices) {
   // Create a linked list
   for (int i = 0; i < numberOfVertices; i++) {
    neighbors.add(new ArrayList<Integer>());
   }

   for (int i = 0; i < edges.length; i++) {
    int u = edges[i][0];
    int v = edges[i][1];
    neighbors.get(u).add(v);
   }
  }

  /** Create adjacency lists for each vertex */
  private void createAdjacencyLists(List<Edge> edges, int numberOfVertices) {
   // Create a linked list for each vertex
   for (int i = 0; i < numberOfVertices; i++) {
    neighbors.add(new ArrayList<Integer>());
   }

   for (Edge edge : edges) {
    neighbors.get(edge.u).add(edge.v);
   }
  }

  @Override
  /** Return the number of vertices in the graph */
  public int getSize() {
   return vertices.size();
  }

  @Override
  /** Return the vertices in the graph */
  public List<V> getVertices() {
   return vertices;
  }

  @Override
  /** Return the object for the specified vertex */
  public V getVertex(int index) {
   return vertices.get(index);
  }

  @Override
  /** Return the index for the specified vertex object */
  public int getIndex(V v) {
   return vertices.indexOf(v);
  }

  @Override
  /** Return the neighbors of the specified vertex */
  public List<Integer> getNeighbors(int index) {
   return neighbors.get(index);
  }

  @Override
  /** Return the degree for a specified vertex */
  public int getDegree(int v) {
   return neighbors.get(v).size();
  }

  @Override
  /** Print the edges */
  public void printEdges() {
   for (int u = 0; u < neighbors.size(); u++) {
    System.out.print(getVertex(u) + " (" + u + "): ");
    for (int j = 0; j < neighbors.get(u).size(); j++) {
     System.out.print("(" + u + ", " + neighbors.get(u).get(j)
       + ") ");
    }
    System.out.println();
   }
  }

  @Override
  /** Clear graph */
  public void clear() {
   vertices.clear();
   neighbors.clear();
  }

  @Override
  /** Add a vertex to the graph */
  public void addVertex(V vertex) {
   vertices.add(vertex);
   neighbors.add(new ArrayList<Integer>());
  }

  @Override
  /** Add an edge to the graph */
  public void addEdge(int u, int v) {
   neighbors.get(u).add(v);
   neighbors.get(v).add(u);
  }

  /** Edge inner class inside the AbstractGraph class */
  public static class Edge {
   public int u; // Starting vertex of the edge
   public int v; // Ending vertex of the edge

   /** Construct an edge for (u, v) */
   public Edge(int u, int v) {
    this.u = u;
    this.v = v;
   }
  }

  @Override
  /** Obtain a DFS tree starting from vertex v */
  /** To be discussed in Section 27.6 */
  public Tree dfs(int v) {
   List<Integer> searchOrder = new ArrayList<Integer>();
   int[] parent = new int[vertices.size()];
   for (int i = 0; i < parent.length; i++)
    parent[i] = -1; // Initialize parent[i] to -1

   // Mark visited vertices
   boolean[] isVisited = new boolean[vertices.size()];

   // Recursively search
   dfs(v, parent, searchOrder, isVisited);

   // Return a search tree
   return new Tree(v, parent, searchOrder);
  }

  /** Recursive method for DFS search */
  private void dfs(int v, int[] parent, List<Integer> searchOrder,
    boolean[] isVisited) {
   // Store the visited vertex
   searchOrder.add(v);
   isVisited[v] = true; // Vertex v visited

   for (int i : neighbors.get(v)) {
    if (!isVisited[i]) {
     parent[i] = v; // The parent of vertex i is v
     dfs(i, parent, searchOrder, isVisited); // Recursive search
    }
   }
  }

  @Override
  /** Starting bfs search from vertex v */
  /** To be discussed in Section 27.7 */
  public Tree bfs(int v) {
   List<Integer> searchOrder = new ArrayList<Integer>();
   int[] parent = new int[vertices.size()];
   for (int i = 0; i < parent.length; i++)
    parent[i] = -1; // Initialize parent[i] to -1

   java.util.LinkedList<Integer> queue = new java.util.LinkedList<Integer>(); // list
                      // used
                      // as
                      // a
                      // queue
   boolean[] isVisited = new boolean[vertices.size()];
   queue.offer(v); // Enqueue v
   isVisited[v] = true; // Mark it visited

   while (!queue.isEmpty()) {
    int u = queue.poll(); // Dequeue to u
    searchOrder.add(u); // u searched
    for (int w : neighbors.get(u)) {
     if (!isVisited[w]) {
      queue.offer(w); // Enqueue w
      parent[w] = u; // The parent of w is u
      isVisited[w] = true; // Mark it visited
     }
    }
   }

   return new Tree(v, parent, searchOrder);
  }

  /** Tree inner class inside the AbstractGraph class */
  /** To be discussed in Section 27.5 */
  public class Tree {
   private int root; // The root of the tree
   private int[] parent; // Store the parent of each vertex
   private List<Integer> searchOrder; // Store the search order

   /** Construct a tree with root, parent, and searchOrder */
   public Tree(int root, int[] parent, List<Integer> searchOrder) {
    this.root = root;
    this.parent = parent;
    this.searchOrder = searchOrder;
   }

   /** Return the root of the tree */
   public int getRoot() {
    return root;
   }

   /** Return the parent of vertex v */
   public int getParent(int v) {
    return parent[v];
   }

   /** Return an array representing search order */
   public List<Integer> getSearchOrder() {
    return searchOrder;
   }

   /** Return number of vertices found */
   public int getNumberOfVerticesFound() {
    return searchOrder.size();
   }

   /** Return the path of vertices from a vertex to the root */
   public List<V> getPath(int index) {
    ArrayList<V> path = new ArrayList<V>();

    do {
     path.add(vertices.get(index));
     index = parent[index];
    } while (index != -1);

    return path;
   }

   /** Print a path from the root to vertex v */
   public void printPath(int index) {
    List<V> path = getPath(index);
    System.out.print("A path from " + vertices.get(root) + " to "
      + vertices.get(index) + ": ");
    for (int i = path.size() - 1; i >= 0; i--)
     System.out.print(path.get(i) + " ");
   }

   /** Print the whole tree */
   public void printTree() {
    System.out.println("Root is: " + vertices.get(root));
    System.out.print("Edges: ");
    for (int i = 0; i < parent.length; i++) {
     if (parent[i] != -1) {
      // Display an edge
      System.out.print("(" + vertices.get(parent[i]) + ", "
        + vertices.get(i) + ") ");
     }
    }
    System.out.println();
   }
  }
 }

 interface Graph<V> {
  /** Return the number of vertices in the graph */
  public int getSize();

  /** Return the vertices in the graph */
  public java.util.List<V> getVertices();

  /** Return the object for the specified vertex index */
  public V getVertex(int index);

  /** Return the index for the specified vertex object */
  public int getIndex(V v);

  /** Return the neighbors of vertex with the specified index */
  public java.util.List<Integer> getNeighbors(int index);

  /** Return the degree for a specified vertex */
  public int getDegree(int v);

  /** Print the edges */
  public void printEdges();

  /** Clear graph */
  public void clear();

  /** Add a vertex to the graph */
  public void addVertex(V vertex);

  /** Add an edge to the graph */
  public void addEdge(int u, int v);

  /** Obtain a depth-first search tree */
  public AbstractGraph<V>.Tree dfs(int v);

  /** Obtain a breadth-first search tree */
  public AbstractGraph<V>.Tree bfs(int v);
 }

}

No comments :

Post a Comment