Pages

Tuesday, 14 February 2017

Chapter 26 Exercise 3, Introduction to Java Programming, Tenth Edition Y. Daniel LiangY.

26.3 (AVL tree animation) Write a program that animates the AVL tree insert ,
delete , and search methods, as shown in Figure 26.1.


import java.awt.*;
import java.awt.event.*;
import java.util.LinkedList;
import java.util.ArrayList;

import javax.swing.*;


public class Exercise03 extends JPanel {
 private static final long serialVersionUID = 1L;
 private AVLTree<Integer> tree;
 private JTextField jtfKey = new JTextField(5);
 private TreeView view = new TreeView();
 private JButton jbtInsert = new JButton("Insert");
 private JButton jbtDelete = new JButton("Delete");
 private JButton jbtSearch = new JButton("Search");
 private ArrayList<Integer> searchPath = new ArrayList<>();
 private int showSearchLenght = -1;
 private Timer insertTimer;
 private Timer searchTimer;
 private Timer deleteTimer;
 
 public static void main(String[] args) {
  JFrame frame = new JFrame("Exercise03");
  JApplet applet = new DisplayBST();
  frame.add(applet);
  frame.setSize(600, 400);
  frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
  frame.setLocationRelativeTo(null);
  frame.setVisible(true);
 }
 
 static class DisplayBST extends JApplet {
  private static final long serialVersionUID = 1L;
  public DisplayBST() {
   add(new Exercise03(new AVLTree<Integer>()));
  }
 }

 /** Construct a view for a binary tree */
 public Exercise03(AVLTree<Integer> tree) {
  this.tree = tree;
  setUI();
 }

 /** Initialize UI for binary tree */
 private void setUI() {
  this.setLayout(new BorderLayout());
  add(view, BorderLayout.CENTER);
  JPanel panel = new JPanel();
  panel.add(new JLabel("Enter a key: "));
  panel.add(jtfKey);
  panel.add(jbtInsert);
  panel.add(jbtDelete);
  panel.add(jbtSearch);
  add(panel, BorderLayout.SOUTH);


  jbtInsert.addActionListener(new ActionListener() {   
   @Override
   public void actionPerformed(ActionEvent e) {
    int key = Integer.parseInt(jtfKey.getText());
    searchPath = tree.searchPath(key);
    showSearchLenght = 0;
    jtfKey.setEditable(false);
    jbtInsert.setEnabled(false);
    jbtDelete.setEnabled(false);
    jbtSearch.setEnabled(false);
    insertTimer.start();
   }
  });
  
  insertTimer = new Timer(500, new ActionListener() {   
   @Override
   public void actionPerformed(ActionEvent e) {
    if(showSearchLenght >= searchPath.size()) {
     insertTimer.stop();
     jtfKey.setEditable(true);
     jbtInsert.setEnabled(true);
     jbtDelete.setEnabled(true);
     jbtSearch.setEnabled(true);
     tree.insert(Integer.parseInt(jtfKey.getText()));
     showSearchLenght = -1; 
     view.repaint();
     jtfKey.setText("");
     jtfKey.requestFocus();
    } else {
     showSearchLenght++;
     view.repaint();
     if(Integer.parseInt(jtfKey.getText()) == searchPath.get(showSearchLenght - 1)) {
      insertTimer.stop();
      jtfKey.setEditable(true);
      jbtInsert.setEnabled(true);
      jbtDelete.setEnabled(true);  
      jbtSearch.setEnabled(true);
      JOptionPane.showMessageDialog(null, jtfKey.getText() + " is already in the tree");
      showSearchLenght = -1; 
      view.repaint();
      jtfKey.setText("");
      jtfKey.requestFocus();
     }
    }
   }
  });
  
  jbtSearch.addActionListener(new ActionListener() {   
   @Override
   public void actionPerformed(ActionEvent e) {
    int key = Integer.parseInt(jtfKey.getText());
    searchPath = tree.searchPath(key);
    showSearchLenght = 0;
    jtfKey.setEditable(false);
    jbtInsert.setEnabled(false);
    jbtDelete.setEnabled(false);
    jbtSearch.setEnabled(false);
    searchTimer.start();
   }
  });
  
  searchTimer = new Timer(500, new ActionListener() {   
   @Override
   public void actionPerformed(ActionEvent e) {
    if(showSearchLenght >= searchPath.size()) {
     searchTimer.stop();
     jtfKey.setEditable(true);
     jbtInsert.setEnabled(true);
     jbtDelete.setEnabled(true);
     jbtSearch.setEnabled(true);
     JOptionPane.showMessageDialog(null, jtfKey.getText() + " is not in the tree");
     showSearchLenght = -1; 
     view.repaint();
     jtfKey.setText("");
     jtfKey.requestFocus();
    } else {
     showSearchLenght++;
     view.repaint();
     if(Integer.parseInt(jtfKey.getText()) == searchPath.get(showSearchLenght - 1)) {
      searchTimer.stop();
      jtfKey.setEditable(true);
      jbtInsert.setEnabled(true);
      jbtDelete.setEnabled(true);
      jbtSearch.setEnabled(true);
      jtfKey.setText("");
      jtfKey.requestFocus();
     }
    }
   }
  });
  
  jbtDelete.addActionListener(new ActionListener() {
   @Override
   public void actionPerformed(ActionEvent e) {
    int key = Integer.parseInt(jtfKey.getText());
    searchPath = tree.searchPath(key);
    showSearchLenght = 0;
    jtfKey.setEditable(false);
    jbtInsert.setEnabled(false);
    jbtDelete.setEnabled(false);
    jbtSearch.setEnabled(false);
    deleteTimer.start();
   }
  });
  
  deleteTimer = new Timer(500, new ActionListener() {   
   @Override
   public void actionPerformed(ActionEvent e) {
    if(showSearchLenght >= searchPath.size()) {
     deleteTimer.stop();
     jtfKey.setEditable(true);
     jbtInsert.setEnabled(true);
     jbtDelete.setEnabled(true);
     jbtSearch.setEnabled(true);
     JOptionPane.showMessageDialog(null, jtfKey.getText() + " is not in the tree");
     showSearchLenght = -1; 
     view.repaint();
     jtfKey.setText("");
     jtfKey.requestFocus();
    } else {
     showSearchLenght++;
     if(Integer.parseInt(jtfKey.getText()) == searchPath.get(showSearchLenght - 1)) {
      deleteTimer.stop();
      tree.delete(Integer.parseInt(jtfKey.getText()));
      showSearchLenght = -1; 
      jtfKey.setEditable(true);
      jbtInsert.setEnabled(true);
      jbtDelete.setEnabled(true);
      jbtSearch.setEnabled(true);
      jtfKey.setText("");
      jtfKey.requestFocus();
     }
     view.repaint();
    }
   }
  });
 }

 // Inner class TreeView for displaying a tree on a panel
 class TreeView extends JPanel {
  private static final long serialVersionUID = 1L;
  private int radius = 20; // Tree node radius
  private int vGap = 50; // Gap between two levels in a tree

  @Override
  protected void paintComponent(Graphics g) {
   super.paintComponent(g);

   if (tree.getRoot() != null) {
    // Display tree recursively
    displayTree(g, tree.getRoot(), getWidth() / 2, 30, getWidth() / 4, 0);
   }
  }

  /** Display a subtree rooted at position (x, y) */
  private void displayTree(Graphics g, BST.TreeNode<Integer> root, int x,
    int y, int hGap, int lenght) {
   //System.out.println("lenght " + lenght);
   //System.out.println("showSearchLenght " + showSearchLenght);
   if(lenght < showSearchLenght) {
    if((searchPath != null)&&(searchPath.contains(root.element))) {
     g.setColor(Color.LIGHT_GRAY);
     g.fillOval(x - radius, y - radius, 2 * radius, 2 * radius);
     g.setColor(Color.BLACK);
    }
   }
   
   g.drawOval(x - radius, y - radius, 2 * radius, 2 * radius);
   g.drawString(root.element + "", x - 6, y + 4);
   g.drawString(tree.balanceFactor((AVLTree.AVLTreeNode<Integer>)(root)) + "", x - 6, y + radius + 15);

   if (root.left != null) {
    // Draw a line to the left node
    connectTwoCircles(g, x - hGap, y + vGap, x, y);
    // Draw the left subtree recursively
    displayTree(g, root.left, x - hGap, y + vGap, hGap / 2, lenght + 1);
   }

   if (root.right != null) {
    // Draw a line to the right node
    connectTwoCircles(g, x + hGap, y + vGap, x, y);
    // Draw the right subtree recursively
    displayTree(g, root.right, x + hGap, y + vGap, hGap / 2, lenght + 1);
   }
  }

  /** Connect two circles centered at (x1, y1) and (x2, y2) */
  private void connectTwoCircles(Graphics g, int x1, int y1, int x2,
    int y2) {
   double d = Math.sqrt(vGap * vGap + (x2 - x1) * (x2 - x1));
   int x11 = (int) (x1 - radius * (x1 - x2) / d);
   int y11 = (int) (y1 - radius * (y1 - y2) / d);
   int x21 = (int) (x2 + radius * (x1 - x2) / d);
   int y21 = (int) (y2 + radius * (y1 - y2) / d);
   g.drawLine(x11, y11, x21, y21);
  }
 }

 static class AVLTree<E extends Comparable<E>> extends BST<E> {
  /** Create a default AVL tree */
  public AVLTree() {
  }

  /** Create an AVL tree from an array of objects */
  public AVLTree(E[] objects) {
   super(objects);
  }

  @Override
  /** Override createNewNode to create an AVLTreeNode */
  protected AVLTreeNode<E> createNewNode(E e) {
   return new AVLTreeNode<E>(e);
  }

  @Override
  /** Insert an element and rebalance if necessary */
  public boolean insert(E e) {
   boolean successful = super.insert(e);
   if (!successful)
    return false; // e is already in the tree
   else {
    balancePath(e); // Balance from e to the root if necessary
   }

   return true; // e is inserted
  }

  /** Update the height of a specified node */
  private void updateHeight(AVLTreeNode<E> node) {
   if (node.left == null && node.right == null) // node is a leaf
    node.height = 0;
   else if (node.left == null) // node has no left subtree
    node.height = 1 + ((AVLTreeNode<E>) (node.right)).height;
   else if (node.right == null) // node has no right subtree
    node.height = 1 + ((AVLTreeNode<E>) (node.left)).height;
   else
    node.height = 1 + Math.max(
      ((AVLTreeNode<E>) (node.right)).height,
      ((AVLTreeNode<E>) (node.left)).height);
  }

  /**
   * Balance the nodes in the path from the specified node to the root if
   * necessary
   */
  private void balancePath(E e) {
   java.util.ArrayList<TreeNode<E>> path = path(e);
   for (int i = path.size() - 1; i >= 0; i--) {
    AVLTreeNode<E> A = (AVLTreeNode<E>) (path.get(i));
    updateHeight(A);
    AVLTreeNode<E> parentOfA = (A == root) ? null
      : (AVLTreeNode<E>) (path.get(i - 1));

    switch (balanceFactor(A)) {
    case -2:
     if (balanceFactor((AVLTreeNode<E>) A.left) <= 0) {
      balanceLL(A, parentOfA); // Perform LL rotation
     } else {
      balanceLR(A, parentOfA); // Perform LR rotation
     }
     break;
    case +2:
     if (balanceFactor((AVLTreeNode<E>) A.right) >= 0) {
      balanceRR(A, parentOfA); // Perform RR rotation
     } else {
      balanceRL(A, parentOfA); // Perform RL rotation
     }
    }
   }
  }

  /** Return the balance factor of the node */
  private int balanceFactor(AVLTreeNode<E> node) {
   if (node.right == null) // node has no right subtree
    return -node.height;
   else if (node.left == null) // node has no left subtree
    return +node.height;
   else
    return ((AVLTreeNode<E>) node.right).height
      - ((AVLTreeNode<E>) node.left).height;
  }

  /** Balance LL (see Figure 9.1) */
  private void balanceLL(TreeNode<E> A, TreeNode<E> parentOfA) {
   TreeNode<E> B = A.left; // A is left-heavy and B is left-heavy

   if (A == root) {
    root = B;
   } else {
    if (parentOfA.left == A) {
     parentOfA.left = B;
    } else {
     parentOfA.right = B;
    }
   }

   A.left = B.right; // Make T2 the left subtree of A
   B.right = A; // Make A the left child of B
   updateHeight((AVLTreeNode<E>) A);
   updateHeight((AVLTreeNode<E>) B);
  }

  /** Balance LR (see Figure 9.1(c)) */
  private void balanceLR(TreeNode<E> A, TreeNode<E> parentOfA) {
   TreeNode<E> B = A.left; // A is left-heavy
   TreeNode<E> C = B.right; // B is right-heavy

   if (A == root) {
    root = C;
   } else {
    if (parentOfA.left == A) {
     parentOfA.left = C;
    } else {
     parentOfA.right = C;
    }
   }

   A.left = C.right; // Make T3 the left subtree of A
   B.right = C.left; // Make T2 the right subtree of B
   C.left = B;
   C.right = A;

   // Adjust heights
   updateHeight((AVLTreeNode<E>) A);
   updateHeight((AVLTreeNode<E>) B);
   updateHeight((AVLTreeNode<E>) C);
  }

  /** Balance RR (see Figure 9.1(b)) */
  private void balanceRR(TreeNode<E> A, TreeNode<E> parentOfA) {
   TreeNode<E> B = A.right; // A is right-heavy and B is right-heavy

   if (A == root) {
    root = B;
   } else {
    if (parentOfA.left == A) {
     parentOfA.left = B;
    } else {
     parentOfA.right = B;
    }
   }

   A.right = B.left; // Make T2 the right subtree of A
   B.left = A;
   updateHeight((AVLTreeNode<E>) A);
   updateHeight((AVLTreeNode<E>) B);
  }

  /** Balance RL (see Figure 9.1(d)) */
  private void balanceRL(TreeNode<E> A, TreeNode<E> parentOfA) {
   TreeNode<E> B = A.right; // A is right-heavy
   TreeNode<E> C = B.left; // B is left-heavy

   if (A == root) {
    root = C;
   } else {
    if (parentOfA.left == A) {
     parentOfA.left = C;
    } else {
     parentOfA.right = C;
    }
   }

   A.right = C.left; // Make T2 the right subtree of A
   B.left = C.right; // Make T3 the left subtree of B
   C.left = A;
   C.right = B;

   // Adjust heights
   updateHeight((AVLTreeNode<E>) A);
   updateHeight((AVLTreeNode<E>) B);
   updateHeight((AVLTreeNode<E>) C);
  }

  @Override
  /** Delete an element from the binary tree.
   * Return true if the element is deleted successfully
   * Return false if the element is not in the tree */
  public boolean delete(E element) {
   if (root == null)
    return false; // Element is not in the tree

   // Locate the node to be deleted and also locate its parent node
   TreeNode<E> parent = null;
   TreeNode<E> current = root;
   while (current != null) {
    if (element.compareTo(current.element) < 0) {
     parent = current;
     current = current.left;
    } else if (element.compareTo(current.element) > 0) {
     parent = current;
     current = current.right;
    } else
     break; // Element is in the tree pointed by current
   }

   if (current == null)
    return false; // Element is not in the tree

   // Case 1: current has no left children (See Figure 23.6)
   if (current.left == null) {
    // Connect the parent with the right child of the current node
    if (parent == null) {
     root = current.right;
    } else {
     if (element.compareTo(parent.element) < 0)
      parent.left = current.right;
     else
      parent.right = current.right;

     // Balance the tree if necessary
     balancePath(parent.element);
    }
   } else {
    // Case 2: The current node has a left child
    // Locate the rightmost node in the left subtree of
    // the current node and also its parent
    TreeNode<E> parentOfRightMost = current;
    TreeNode<E> rightMost = current.left;

    while (rightMost.right != null) {
     parentOfRightMost = rightMost;
     rightMost = rightMost.right; // Keep going to the right
    }

    // Replace the element in current by the element in rightMost
    current.element = rightMost.element;

    // Eliminate rightmost node
    if (parentOfRightMost.right == rightMost)
     parentOfRightMost.right = rightMost.left;
    else
     // Special case: parentOfRightMost is current
     parentOfRightMost.left = rightMost.left;

    // Balance the tree if necessary
    balancePath(parentOfRightMost.element);
   }

   size--;
   return true; // Element inserted
  }

  /** AVLTreeNode is TreeNode plus height */
  protected static class AVLTreeNode<E extends Comparable<E>> extends
    BST.TreeNode<E> {
   protected int height = 0; // New data field

   public AVLTreeNode(E o) {
    super(o);
   }
  }
 }

 static class BST<E extends Comparable<E>> extends AbstractTree<E> {
  protected TreeNode<E> root;
  protected int size = 0;

  public void inorder2() {
   if (root == null) {
    return;
   }

   LinkedList<TreeNode<E>> list = new LinkedList<>();
   LinkedList<TreeNode<E>> stack = new LinkedList<>();
   stack.add(root);

   while (!stack.isEmpty()) {
    TreeNode<E> node = stack.getFirst();
    if ((node.left != null) && (!list.contains(node.left))) {
     stack.push(node.left);
    } else {
     stack.removeFirst();
     list.add(node);
     if (node.right != null) {
      stack.addFirst(node.right);
     }
    }
   }
   for (TreeNode<E> treeNode : list) {
    System.out.print(treeNode.element + " ");
   }
  }

  public boolean isFullBST() {
   return size == Math.round(Math.pow(2, height()) - 1);
  }

  /**
   * Returns the height of this binary tree, i.e., the number of the nodes
   * in the longest path of the root to a leaf
   */
  public int height() {
   return height(root);
  }

  public int height(TreeNode<E> node) {
   if (node == null) {
    return 0;
   } else {
    return 1 + Math.max(height(node.left), height(node.right));
   }
  }

  /** Create a default binary tree */
  public BST() {
  }

  /** Create a binary tree from an array of objects */
  public BST(E[] objects) {
   for (int i = 0; i < objects.length; i++)
    insert(objects[i]);
  }

  /** Returns true if the element is in the tree */
  public ArrayList<E> searchPath(E e) {
   TreeNode<E> current = root; // Start from the root
   ArrayList<E> result = new ArrayList<>();
   while (current != null) {
    result.add(current.element);
    if (e.compareTo(current.element) < 0) {
     current = current.left;
    } else if (e.compareTo(current.element) > 0) {
     current = current.right;
    } else {
     return result;
    }
   }
   return result;
  }

  @Override
  /** Returns true if the element is in the tree */
  public boolean search(E e) {
   TreeNode<E> current = root; // Start from the root

   while (current != null) {
    if (e.compareTo(current.element) < 0) {
     current = current.left;
    } else if (e.compareTo(current.element) > 0) {
     current = current.right;
    } else
     // element matches current.element
     return true; // Element is found
   }

   return false;
  }

  @Override
  /** Insert element o into the binary tree
   * Return true if the element is inserted successfully */
  public boolean insert(E e) {
   if (root == null)
    root = createNewNode(e); // Create a new root
   else {
    // Locate the parent node
    TreeNode<E> parent = null;
    TreeNode<E> current = root;
    while (current != null)
     if (e.compareTo(current.element) < 0) {
      parent = current;
      current = current.left;
     } else if (e.compareTo(current.element) > 0) {
      parent = current;
      current = current.right;
     } else
      return false; // Duplicate node not inserted

    // Create the new node and attach it to the parent node
    if (e.compareTo(parent.element) < 0)
     parent.left = createNewNode(e);
    else
     parent.right = createNewNode(e);
   }

   size++;
   return true; // Element inserted
  }

  protected TreeNode<E> createNewNode(E e) {
   return new TreeNode<E>(e);
  }

  @Override
  /** Inorder traversal from the root*/
  public void inorder() {
   inorder(root);
  }

  /** Inorder traversal from a subtree */
  protected void inorder(TreeNode<E> root) {
   if (root == null)
    return;
   inorder(root.left);
   System.out.print(root.element + " ");
   inorder(root.right);
  }

  @Override
  /** Postorder traversal from the root */
  public void postorder() {
   postorder(root);
  }

  /** Postorder traversal from a subtree */
  protected void postorder(TreeNode<E> root) {
   if (root == null)
    return;
   postorder(root.left);
   postorder(root.right);
   System.out.print(root.element + " ");
  }

  @Override
  /** Preorder traversal from the root */
  public void preorder() {
   preorder(root);
  }

  /** Preorder traversal from a subtree */
  protected void preorder(TreeNode<E> root) {
   if (root == null)
    return;
   System.out.print(root.element + " ");
   preorder(root.left);
   preorder(root.right);
  }

  /**
   * This inner class is static, because it does not access any instance
   * members defined in its outer class
   */
  public static class TreeNode<E extends Comparable<E>> {
   protected E element;
   protected TreeNode<E> left;
   protected TreeNode<E> right;

   public TreeNode(E e) {
    element = e;
   }
  }

  @Override
  /** Get the number of nodes in the tree */
  public int getSize() {
   return size;
  }

  /** Returns the root of the tree */
  public TreeNode<E> getRoot() {
   return root;
  }

  /** Returns a path from the root leading to the specified element */
  public java.util.ArrayList<TreeNode<E>> path(E e) {
   java.util.ArrayList<TreeNode<E>> list = new java.util.ArrayList<TreeNode<E>>();
   TreeNode<E> current = root; // Start from the root

   while (current != null) {
    list.add(current); // Add the node to the list
    if (e.compareTo(current.element) < 0) {
     current = current.left;
    } else if (e.compareTo(current.element) > 0) {
     current = current.right;
    } else
     break;
   }

   return list; // Return an array of nodes
  }

  @Override
  /** Delete an element from the binary tree.
   * Return true if the element is deleted successfully
   * Return false if the element is not in the tree */
  public boolean delete(E e) {
   // Locate the node to be deleted and also locate its parent node
   TreeNode<E> parent = null;
   TreeNode<E> current = root;
   while (current != null) {
    if (e.compareTo(current.element) < 0) {
     parent = current;
     current = current.left;
    } else if (e.compareTo(current.element) > 0) {
     parent = current;
     current = current.right;
    } else
     break; // Element is in the tree pointed at by current
   }

   if (current == null)
    return false; // Element is not in the tree

   // Case 1: current has no left children
   if (current.left == null) {
    // Connect the parent with the right child of the current node
    if (parent == null) {
     root = current.right;
    } else {
     if (e.compareTo(parent.element) < 0)
      parent.left = current.right;
     else
      parent.right = current.right;
    }
   } else {
    // Case 2: The current node has a left child
    // Locate the rightmost node in the left subtree of
    // the current node and also its parent
    TreeNode<E> parentOfRightMost = current;
    TreeNode<E> rightMost = current.left;

    while (rightMost.right != null) {
     parentOfRightMost = rightMost;
     rightMost = rightMost.right; // Keep going to the right
    }

    // Replace the element in current by the element in rightMost
    current.element = rightMost.element;

    // Eliminate rightmost node
    if (parentOfRightMost.right == rightMost)
     parentOfRightMost.right = rightMost.left;
    else
     // Special case: parentOfRightMost == current
     parentOfRightMost.left = rightMost.left;
   }

   size--;
   return true; // Element inserted
  }

  @Override
  /** Obtain an iterator. Use inorder. */
  public java.util.Iterator<E> iterator() {
   return new InorderIterator();
  }

  // Inner class InorderIterator
  private class InorderIterator implements java.util.Iterator<E> {
   // Store the elements in a list
   private java.util.ArrayList<E> list = new java.util.ArrayList<E>();
   private int current = 0; // Point to the current element in list

   public InorderIterator() {
    inorder(); // Traverse binary tree and store elements in list
   }

   /** Inorder traversal from the root */
   private void inorder() {
    inorder(root);
   }

   /** Inorder traversal from a subtree */
   private void inorder(TreeNode<E> root) {
    if (root == null)
     return;
    inorder(root.left);
    list.add(root.element);
    inorder(root.right);
   }

   @Override
   /** More elements for traversing? */
   public boolean hasNext() {
    if (current < list.size())
     return true;

    return false;
   }

   @Override
   /** Get the current element and move to the next */
   public E next() {
    return list.get(current++);
   }

   @Override
   /** Remove the current element */
   public void remove() {
    delete(list.get(current)); // Delete the current element
    list.clear(); // Clear the list
    inorder(); // Rebuild the list
   }
  }

  /** Remove all elements from the tree */
  public void clear() {
   root = null;
   size = 0;
  }
 }

 static abstract class AbstractTree<E> implements Tree<E> {
  @Override
  /** Inorder traversal from the root*/
  public void inorder() {
  }

  @Override
  /** Postorder traversal from the root */
  public void postorder() {
  }

  @Override
  /** Preorder traversal from the root */
  public void preorder() {
  }

  @Override
  /** Return true if the tree is empty */
  public boolean isEmpty() {
   return getSize() == 0;
  }

  @Override
  /** Return an iterator for the tree */
  public java.util.Iterator<E> iterator() {
   return null;
  }
 }

 interface Tree<E> extends Iterable<E> {
  /** Return true if the element is in the tree */
  public boolean search(E e);

  /**
   * Insert element o into the binary tree Return true if the element is
   * inserted successfully
   */
  public boolean insert(E e);

  /**
   * Delete the specified element from the tree Return true if the element
   * is deleted successfully
   */
  public boolean delete(E e);

  /** Inorder traversal from the root */
  public void inorder();

  /** Postorder traversal from the root */
  public void postorder();

  /** Preorder traversal from the root */
  public void preorder();

  /** Get the number of nodes in the tree */
  public int getSize();

  /** Return true if the tree is empty */
  public boolean isEmpty();

  public java.util.Iterator<E> iterator();
 }
}

No comments :

Post a Comment