Pages

Tuesday, 21 February 2017

Chapter 28 Exercise 18, Introduction to Java Programming, Tenth Edition Y. Daniel LiangY.

28.18 (Knight’s Tour cycle) Rewrite KnightTourApp.java in the case study in Supplement VI.E to find a knight’s tour that visits each square in a chessboard and returns to the starting square. Reduce the Knight’s Tour cycle problem to the problem of finding a Hamiltonian cycle.


import java.util.ArrayList;
import java.util.List;

import javax.swing.*;

import java.awt.*;
import java.awt.event.*;

public class Exercise18 extends JApplet {
 private static final long serialVersionUID = 1L;
 private KnightTourModel model = new KnightTourModel();
 private PaintKnightTour paintKnightTour = new PaintKnightTour();
 private JTextField jtfRow = new JTextField(2);
 private JTextField jtfColumn = new JTextField(2);
 private JButton jbtSearch = new JButton("Search");

 public Exercise18() {
  JPanel panel = new JPanel();
  panel.add(new JLabel("Specify a starting position, row: "));
  panel.add(jtfRow);
  panel.add(new JLabel("column: "));
  panel.add(jtfColumn);
  panel.add(jbtSearch);
  add(paintKnightTour, BorderLayout.CENTER);
  add(panel, BorderLayout.SOUTH);

  jbtSearch.addActionListener(new ActionListener() {
   @Override
   public void actionPerformed(ActionEvent e) {
    int position = Integer.parseInt(jtfRow.getText()) * 8
      + Integer.parseInt(jtfColumn.getText());
    paintKnightTour.displayPath(model.getHamiltonianPath(position));
   }
  });
 }

 /** A panel to paint the chessboard and the knight tour */
 private static class PaintKnightTour extends JPanel {
  private static final long serialVersionUID = 1L;
  private List<Integer> path; // A Knight tour path

  public PaintKnightTour() {
   setBorder(BorderFactory.createLineBorder(Color.black, 1));
  }

  public void displayPath(List<Integer> path) {
   this.path = path;
   repaint();
  }

  @Override
  protected void paintComponent(Graphics g) {
   super.paintComponent(g);

   // Display horizontal lines
   for (int i = 0; i < 8; i++)
    g.drawLine(0, i * getHeight() / 8, getWidth(), i * getHeight()
      / 8);

   // Display vertical lines
   for (int i = 0; i < 8; i++)
    g.drawLine(i * getWidth() / 8, 0, (int) i * getWidth() / 8,
      getHeight());

   if (path == null)
    return; // No path to be displayed yet

   for (int i = 0; i < path.size() - 1; i++) {
    int u = path.get(i);
    int v = path.get(i + 1);

    // Knight moves from u and v. Draw a line to connect u and v
    g.drawLine((u % 8) * getWidth() / 8 + getWidth() / 16, (u / 8)
      * getHeight() / 8 + getHeight() / 16, (v % 8)
      * getWidth() / 8 + getWidth() / 16, (v / 8)
      * getHeight() / 8 + getHeight() / 16);
   }
  }
 }

 public static void main(String[] args) {
  // Create a frame
  JFrame frame = new JFrame("Knight's Tour");

  // Create an instance of the applet
  Exercise18 applet = new Exercise18();

  // Add the applet instance to the frame
  frame.add(applet, BorderLayout.CENTER);

  // Display the frame
  frame.setSize(400, 400);
  frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
  frame.setLocationRelativeTo(null); // Center the frame
  frame.setVisible(true);
 }

 static class KnightTourModel {
  private UnweightedGraph<Integer> graph; // Define a graph

  public KnightTourModel() {
   // (u, v) is an edge if a knight can move from u and v
   ArrayList<AbstractGraph.Edge> edges = getEdges();

   // Create a graph with 64 vertices labeled 0 to 63
   graph = new UnweightedGraph<Integer>(edges, 64);
  }

  /** Get a Hamiltonian path starting from vertex v */
  public List<Integer> getHamiltonianPath(int v) {
   return graph.getHamiltonianPath(v);
  }

  /** Create edges for the graph */
  public static ArrayList<AbstractGraph.Edge> getEdges() {
   ArrayList<AbstractGraph.Edge> edges = new ArrayList<AbstractGraph.Edge>(); // Store
                      // edges
   for (int i = 0; i < 8; i++)
    for (int j = 0; j < 8; j++) {
     int u = i * 8 + j; // The vertex label

     // Check eight possible edges from u
     if (i - 1 >= 0 && j - 2 >= 0) {
      int v1 = (i - 1) * 8 + (j - 2);
      edges.add(new AbstractGraph.Edge(u, v1));
     }

     if (i - 2 >= 0 && j - 1 >= 0) {
      int v2 = (i - 2) * 8 + (j - 1);
      edges.add(new AbstractGraph.Edge(u, v2));
     }

     if (i - 2 >= 0 && j + 1 <= 7) {
      int v3 = (i - 2) * 8 + (j + 1);
      edges.add(new AbstractGraph.Edge(u, v3));
     }

     if (i - 1 >= 0 && j + 2 <= 7) {
      int v4 = (i - 1) * 8 + (j + 2);
      edges.add(new AbstractGraph.Edge(u, v4));
     }

     if (i + 1 <= 7 && j + 2 <= 7) {
      int v5 = (i + 1) * 8 + (j + 2);
      edges.add(new AbstractGraph.Edge(u, v5));
     }

     if (i + 2 <= 7 && j + 1 <= 7) {
      int v6 = (i + 2) * 8 + (j + 1);
      edges.add(new AbstractGraph.Edge(u, v6));
     }

     if (i + 2 <= 7 && j - 1 >= 0) {
      int v7 = (i + 2) * 8 + (j - 1);
      edges.add(new AbstractGraph.Edge(u, v7));
     }

     if (i + 1 <= 7 && j - 2 >= 0) {
      int v8 = (i + 1) * 8 + (j - 2);
      edges.add(new AbstractGraph.Edge(u, v8));
     }
    }

   return edges;
  }
 }
 static class UnweightedGraph<V> extends AbstractGraph<V> {
  /** Construct an empty graph */
  public UnweightedGraph() {
  }

  /** Construct a graph from edges and vertices stored in arrays */
  public UnweightedGraph(int[][] edges, V[] vertices) {
   super(edges, vertices);
  }

  /** Construct a graph from edges and vertices stored in List */
  public UnweightedGraph(List<Edge> edges, List<V> vertices) {
   super(edges, vertices);
  }

  /** Construct a graph for integer vertices 0, 1, 2 and edge list */
  public UnweightedGraph(List<Edge> edges, int numberOfVertices) {
   super(edges, numberOfVertices);
  }

  /** Construct a graph from integer vertices 0, 1, and edge array */
  public UnweightedGraph(int[][] edges, int numberOfVertices) {
   super(edges, numberOfVertices);
  }
 }

 static abstract class AbstractGraph<V> implements Graph<V> {
  protected List<V> vertices = new ArrayList<V>(); // Store vertices
  protected List<List<Integer>> neighbors = new ArrayList<List<Integer>>(); // Adjacency
                     // lists

  /** Construct an empty graph */
  protected AbstractGraph() {
  }

  /** Construct a graph from edges and vertices stored in arrays */
  protected AbstractGraph(int[][] edges, V[] vertices) {
   for (int i = 0; i < vertices.length; i++)
    this.vertices.add(vertices[i]);

   createAdjacencyLists(edges, vertices.length);
  }

  /** Construct a graph from edges and vertices stored in List */
  protected AbstractGraph(List<Edge> edges, List<V> vertices) {
   for (int i = 0; i < vertices.size(); i++)
    this.vertices.add(vertices.get(i));

   createAdjacencyLists(edges, vertices.size());
  }

  /** Construct a graph for integer vertices 0, 1, 2 and edge list */
  @SuppressWarnings("unchecked")
  protected AbstractGraph(List<Edge> edges, int numberOfVertices) {
   for (int i = 0; i < numberOfVertices; i++)
    vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...}

   createAdjacencyLists(edges, numberOfVertices);
  }

  /** Construct a graph from integer vertices 0, 1, and edge array */
  @SuppressWarnings("unchecked")
  protected AbstractGraph(int[][] edges, int numberOfVertices) {
   for (int i = 0; i < numberOfVertices; i++)
    vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...}

   createAdjacencyLists(edges, numberOfVertices);
  }
  
  public List<Integer> getHamiltonianPath(int u) {
   List<Integer> searchOrder = new ArrayList<Integer>();
   int[] parent = new int[vertices.size()];
   for (int i = 0; i < parent.length; i++) {
    parent[i] = -1;
   }

   boolean[] isVisited = new boolean[vertices.size()];

   return getAllCycles(u, u, searchOrder, isVisited);
  }

  private List<Integer> getAllCycles(int first, int v, List<Integer> searchOrder, boolean[] isVisited) {
   searchOrder.add(v);
   isVisited[v] = true;

   for (int i : neighbors.get(v)) {
    if (!isVisited[i]) {
     boolean[] newIsVisited = java.util.Arrays.copyOf(isVisited, isVisited.length);
     @SuppressWarnings("unchecked")
     List<Integer> newSearchOrder = (List<Integer>) ((ArrayList<Integer>)searchOrder).clone();
     List<Integer> result = getAllCycles(first, i, newSearchOrder, newIsVisited);
     if(result != null) {
      return result;
     }
    } else if(first == i) {
     if(searchOrder.size() == vertices.size()) {
      return searchOrder; 
     }
    }
   }
   return null;
  }


  /** Create adjacency lists for each vertex */
  private void createAdjacencyLists(int[][] edges, int numberOfVertices) {
   // Create a linked list
   for (int i = 0; i < numberOfVertices; i++) {
    neighbors.add(new ArrayList<Integer>());
   }

   for (int i = 0; i < edges.length; i++) {
    int u = edges[i][0];
    int v = edges[i][1];
    neighbors.get(u).add(v);
   }
  }

  /** Create adjacency lists for each vertex */
  private void createAdjacencyLists(List<Edge> edges, int numberOfVertices) {
   // Create a linked list for each vertex
   for (int i = 0; i < numberOfVertices; i++) {
    neighbors.add(new ArrayList<Integer>());
   }

   for (Edge edge : edges) {
    neighbors.get(edge.u).add(edge.v);
   }
  }

  @Override
  /** Return the number of vertices in the graph */
  public int getSize() {
   return vertices.size();
  }

  @Override
  /** Return the vertices in the graph */
  public List<V> getVertices() {
   return vertices;
  }

  @Override
  /** Return the object for the specified vertex */
  public V getVertex(int index) {
   return vertices.get(index);
  }

  @Override
  /** Return the index for the specified vertex object */
  public int getIndex(V v) {
   return vertices.indexOf(v);
  }

  @Override
  /** Return the neighbors of the specified vertex */
  public List<Integer> getNeighbors(int index) {
   return neighbors.get(index);
  }

  @Override
  /** Return the degree for a specified vertex */
  public int getDegree(int v) {
   return neighbors.get(v).size();
  }

  @Override
  /** Print the edges */
  public void printEdges() {
   for (int u = 0; u < neighbors.size(); u++) {
    System.out.print(getVertex(u) + " (" + u + "): ");
    for (int j = 0; j < neighbors.get(u).size(); j++) {
     System.out.print("(" + u + ", " + neighbors.get(u).get(j)
       + ") ");
    }
    System.out.println();
   }
  }

  @Override
  /** Clear graph */
  public void clear() {
   vertices.clear();
   neighbors.clear();
  }

  @Override
  /** Add a vertex to the graph */
  public void addVertex(V vertex) {
   vertices.add(vertex);
   neighbors.add(new ArrayList<Integer>());
  }

  @Override
  /** Add an edge to the graph */
  public void addEdge(int u, int v) {
   neighbors.get(u).add(v);
   neighbors.get(v).add(u);
  }

  /** Edge inner class inside the AbstractGraph class */
  public static class Edge {
   public int u; // Starting vertex of the edge
   public int v; // Ending vertex of the edge

   /** Construct an edge for (u, v) */
   public Edge(int u, int v) {
    this.u = u;
    this.v = v;
   }
  }

  @Override
  /** Obtain a DFS tree starting from vertex v */
  /** To be discussed in Section 27.6 */
  public Tree dfs(int v) {
   List<Integer> searchOrder = new ArrayList<Integer>();
   int[] parent = new int[vertices.size()];
   for (int i = 0; i < parent.length; i++)
    parent[i] = -1; // Initialize parent[i] to -1

   // Mark visited vertices
   boolean[] isVisited = new boolean[vertices.size()];

   // Recursively search
   dfs(v, parent, searchOrder, isVisited);

   // Return a search tree
   return new Tree(v, parent, searchOrder);
  }

  /** Recursive method for DFS search */
  private void dfs(int v, int[] parent, List<Integer> searchOrder,
    boolean[] isVisited) {
   // Store the visited vertex
   searchOrder.add(v);
   isVisited[v] = true; // Vertex v visited

   for (int i : neighbors.get(v)) {
    if (!isVisited[i]) {
     parent[i] = v; // The parent of vertex i is v
     dfs(i, parent, searchOrder, isVisited); // Recursive search
    }
   }
  }

  @Override
  /** Starting bfs search from vertex v */
  /** To be discussed in Section 27.7 */
  public Tree bfs(int v) {
   List<Integer> searchOrder = new ArrayList<Integer>();
   int[] parent = new int[vertices.size()];
   for (int i = 0; i < parent.length; i++)
    parent[i] = -1; // Initialize parent[i] to -1

   java.util.LinkedList<Integer> queue = new java.util.LinkedList<Integer>(); // list
                      // used
                      // as
                      // a
                      // queue
   boolean[] isVisited = new boolean[vertices.size()];
   queue.offer(v); // Enqueue v
   isVisited[v] = true; // Mark it visited

   while (!queue.isEmpty()) {
    int u = queue.poll(); // Dequeue to u
    searchOrder.add(u); // u searched
    for (int w : neighbors.get(u)) {
     if (!isVisited[w]) {
      queue.offer(w); // Enqueue w
      parent[w] = u; // The parent of w is u
      isVisited[w] = true; // Mark it visited
     }
    }
   }

   return new Tree(v, parent, searchOrder);
  }

  /** Tree inner class inside the AbstractGraph class */
  /** To be discussed in Section 27.5 */
  public class Tree {
   private int root; // The root of the tree
   private int[] parent; // Store the parent of each vertex
   private List<Integer> searchOrder; // Store the search order

   /** Construct a tree with root, parent, and searchOrder */
   public Tree(int root, int[] parent, List<Integer> searchOrder) {
    this.root = root;
    this.parent = parent;
    this.searchOrder = searchOrder;
   }

   /** Return the root of the tree */
   public int getRoot() {
    return root;
   }

   /** Return the parent of vertex v */
   public int getParent(int v) {
    return parent[v];
   }

   /** Return an array representing search order */
   public List<Integer> getSearchOrder() {
    return searchOrder;
   }

   /** Return number of vertices found */
   public int getNumberOfVerticesFound() {
    return searchOrder.size();
   }

   /** Return the path of vertices from a vertex to the root */
   public List<V> getPath(int index) {
    ArrayList<V> path = new ArrayList<V>();

    do {
     path.add(vertices.get(index));
     index = parent[index];
    } while (index != -1);

    return path;
   }

   /** Print a path from the root to vertex v */
   public void printPath(int index) {
    List<V> path = getPath(index);
    System.out.print("A path from " + vertices.get(root) + " to "
      + vertices.get(index) + ": ");
    for (int i = path.size() - 1; i >= 0; i--)
     System.out.print(path.get(i) + " ");
   }

   /** Print the whole tree */
   public void printTree() {
    System.out.println("Root is: " + vertices.get(root));
    System.out.print("Edges: ");
    for (int i = 0; i < parent.length; i++) {
     if (parent[i] != -1) {
      // Display an edge
      System.out.print("(" + vertices.get(parent[i]) + ", "
        + vertices.get(i) + ") ");
     }
    }
    System.out.println();
   }
  }
 }

 interface Graph<V> {
  /** Return the number of vertices in the graph */
  public int getSize();

  /** Return the vertices in the graph */
  public java.util.List<V> getVertices();

  /** Return the object for the specified vertex index */
  public V getVertex(int index);

  /** Return the index for the specified vertex object */
  public int getIndex(V v);

  /** Return the neighbors of vertex with the specified index */
  public java.util.List<Integer> getNeighbors(int index);

  /** Return the degree for a specified vertex */
  public int getDegree(int v);

  /** Print the edges */
  public void printEdges();

  /** Clear graph */
  public void clear();

  /** Add a vertex to the graph */
  public void addVertex(V vertex);

  /** Add an edge to the graph */
  public void addEdge(int u, int v);

  /** Obtain a depth-first search tree */
  public AbstractGraph<V>.Tree dfs(int v);

  /** Obtain a breadth-first search tree */
  public AbstractGraph<V>.Tree bfs(int v);
 }

}

No comments :

Post a Comment