13.20 (Algebra: solve quadratic equations)
Rewrite Programming Exercise 3.1 to obtain imaginary roots
if the determinant is less than 0 using the Complex class
in Programming Exercise 13.17.
Rewrite Programming Exercise 3.1 to obtain imaginary roots
if the determinant is less than 0 using the Complex class
in Programming Exercise 13.17.
public class QuadraticEquation { private double a; private double b; private double c; public QuadraticEquation(double a, double b, double c) { this.a = a; this.b = b; this.c = c; } public double getA() { return a; } public void setA(double a) { this.a = a; } public double getB() { return b; } public void setB(double b) { this.b = b; } public double getC() { return c; } public void setC(double c) { this.c = c; } public double getDiscriminant() { return b * b - 4.0 * a * c; } public double getRoot1() { return (-b + Math.pow(getDiscriminant(), 0.5)) / (2.0 * a); } public double getRoot2() { return (-b - Math.pow(getDiscriminant(), 0.5)) / (2.0 * a); } }
import java.text.DecimalFormat; public class Complex { // real numbers private double a; private double b; public Complex(double a, double b) { this.a = a; this.b = b; } public Complex(double a) { this(a, 0); } public Complex() { this(0); } public Complex add(Complex complex) { // a + bi + c + di = (a + c) + (b + d)i return new Complex((a + complex.a), (b + complex.b)); } public Complex subtract(Complex complex) { // a + bi - (c + di) = (a - c) + (b - d)i return new Complex((a - complex.a), (b - complex.b)); } public Complex multiply(Complex complex) { // (a + bi)*(c + di) = (ac - bd) + (bc + ad)i return new Complex((a * complex.a - b * complex.b), (b * complex.a + a * complex.b)); } public Complex divide(Complex complex) { // (a+bi)/(c+di)=(ac+bd)/(c^2 +d^2)+(bc-ad)i/(c^2 +d^2) return new Complex( (a*complex.a+b*complex.b) / ((Math.pow(complex.a, 2) + Math.pow(complex.b, 2))), (b * complex.a - a * complex.b) / ((Math.pow(complex.a, 2) + Math.pow(complex.b, 2)))); } public double abs() { return Math.sqrt(Math.pow(a, 2) + Math.pow(b, 2)); } public double getRealPart() { return a; } public double getImaginaryPart(){ return b; } @Override public String toString() { if (b == 0) return a + ""; DecimalFormat decimal = new DecimalFormat("#.###"); return "(" + decimal.format(a) + " + " + decimal.format(b) + "i)"; } }
import java.util.Scanner; public class Exercise_20 { public static void main(String[] args) { Scanner input = new Scanner(System.in); System.out.print("Enter a, b, c: "); double a = input.nextDouble(); double b = input.nextDouble(); double c = input.nextDouble(); QuadraticEquation equation = new QuadraticEquation(a, b, c); double discriminant = equation.getDiscriminant(); if (discriminant > 0) { double r1 = (-b + Math.pow(discriminant, 0.5)) / (2 * a); double r2 = (-b - Math.pow(discriminant, 0.5)) / (2 * a); System.out.println("The roots are " + r1 + " and " + r2); }else if (discriminant == 0) { Complex r1 = new Complex(-b / (2 * a)); System.out.println("The root is " + r1); } else { System.out.println("The equation has no real roots."); Complex r1 = new Complex(-b / (2 * a), Math.pow(-discriminant, 0.5) / (2 * a)); Complex r2 = new Complex(-b / (2 * a), -Math.pow(-discriminant, 0.5) / (2 * a)); System.out.println("The roots are " + r1 + " and " + r2); } } }
No comments :
Post a Comment