29.20 (Test if a vertex u is in T efficiently) Since T is implemented using a list
in the getMinimumSpanningTree and getShortestPath methods in
Listing 29.2 WeightedGraph.java, testing whether a vertex u is in T by invoking
T.contains(u) takes O(n) time. Modify these two methods by introducing
an array named isInT. Set isInT[u] to true when a vertex u is added to T.
Testing whether a vertex u is in T can now be done in O(1) time. Write a test
program using the following code, where graph1 is created from Figure 29.1.
WeightedGraph<String> graph1 = new WeightedGraph<>(edges, vertices);
WeightedGraph<String>.MST tree1 = graph1.getMinimumSpanningTree();
System.out.println("Total weight is " + tree1.getTotalWeight());
tree1.printTree();
WeightedGraph<String>.ShortestPathTree tree2 =
graph1.getShortestPath(graph1.getIndex("Chicago"));
tree2.printAllPaths();
in the getMinimumSpanningTree and getShortestPath methods in
Listing 29.2 WeightedGraph.java, testing whether a vertex u is in T by invoking
T.contains(u) takes O(n) time. Modify these two methods by introducing
an array named isInT. Set isInT[u] to true when a vertex u is added to T.
Testing whether a vertex u is in T can now be done in O(1) time. Write a test
program using the following code, where graph1 is created from Figure 29.1.
WeightedGraph<String> graph1 = new WeightedGraph<>(edges, vertices);
WeightedGraph<String>.MST tree1 = graph1.getMinimumSpanningTree();
System.out.println("Total weight is " + tree1.getTotalWeight());
tree1.printTree();
WeightedGraph<String>.ShortestPathTree tree2 =
graph1.getShortestPath(graph1.getIndex("Chicago"));
tree2.printAllPaths();
import java.util.*; public class Exercise20 { public static void main(String[] args) { String[] vertices = { "Seattle", "San Francisco", "Los Angeles", "Denver", "Kansas City", "Chicago", "Boston", "New York", "Atlanta", "Miami", "Dallas", "Houston" }; int[][] edges = { { 0, 1, 807 }, { 0, 3, 1331 }, { 0, 5, 2097 }, { 1, 0, 807 }, { 1, 2, 381 }, { 1, 3, 1267 }, { 2, 1, 381 }, { 2, 3, 1015 }, { 2, 4, 1663 }, { 2, 10, 1435 }, { 3, 0, 1331 }, { 3, 1, 1267 }, { 3, 2, 1015 }, { 3, 4, 599 }, { 3, 5, 1003 }, { 4, 2, 1663 }, { 4, 3, 599 }, { 4, 5, 533 }, { 4, 7, 1260 }, { 4, 8, 864 }, { 4, 10, 496 }, { 5, 0, 2097 }, { 5, 3, 1003 }, { 5, 4, 533 }, { 5, 6, 983 }, { 5, 7, 787 }, { 6, 5, 983 }, { 6, 7, 214 }, { 7, 4, 1260 }, { 7, 5, 787 }, { 7, 6, 214 }, { 7, 8, 888 }, { 8, 4, 864 }, { 8, 7, 888 }, { 8, 9, 661 }, { 8, 10, 781 }, { 8, 11, 810 }, { 9, 8, 661 }, { 9, 11, 1187 }, { 10, 2, 1435 }, { 10, 4, 496 }, { 10, 8, 781 }, { 10, 11, 239 }, { 11, 8, 810 }, { 11, 9, 1187 }, { 11, 10, 239 } }; WeightedGraph<String> graph1 = new WeightedGraph<>(edges, vertices); WeightedGraph<String>.MST tree1 = graph1.getMinimumSpanningTree(); System.out.println("Total weight is " + tree1.getTotalWeight()); tree1.printTree(); System.out.println(); WeightedGraph<String>.ShortestPathTree tree2 = graph1.getShortestPath(graph1.getIndex("Chicago")); tree2.printAllPaths(); } public static interface Graph<V> { /** Return the number of vertices in the graph */ public int getSize(); /** Return the vertices in the graph */ public java.util.List<V> getVertices(); /** Return the object for the specified vertex index */ public V getVertex(int index); /** Return the index for the specified vertex object */ public int getIndex(V v); /** Return the neighbors of vertex with the specified index */ public java.util.List<Integer> getNeighbors(int index); /** Return the degree for a specified vertex */ public int getDegree(int v); /** Print the edges */ public void printEdges(); /** Clear graph */ public void clear(); /** Add a vertex to the graph */ public boolean addVertex(V vertex); /** Add an edge to the graph */ public boolean addEdge(int u, int v); /** Obtain a depth-first search tree */ public AbstractGraph<V>.Tree dfs(int v); /** Obtain a breadth-first search tree */ public AbstractGraph<V>.Tree bfs(int v); } public static abstract class AbstractGraph<V> implements Graph<V> { protected List<V> vertices = new ArrayList<V>(); // Store vertices protected List<List<Integer>> neighbors = new ArrayList<List<Integer>>(); // Adjacency lists /** Construct an empty graph */ protected AbstractGraph() { } /** Construct a graph from edges and vertices stored in arrays */ protected AbstractGraph(int[][] edges, V[] vertices) { for (int i = 0; i < vertices.length; i++) addVertex(vertices[i]); createAdjacencyLists(edges, vertices.length); } /** Construct a graph from edges and vertices stored in List */ protected AbstractGraph(List<Edge> edges, List<V> vertices) { for (int i = 0; i < vertices.size(); i++) addVertex(vertices.get(i)); createAdjacencyLists(edges, vertices.size()); } /** Construct a graph for integer vertices 0, 1, 2 and edge list */ protected AbstractGraph(List<Edge> edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) addVertex((V)(new Integer(i))); // vertices is {0, 1, ...} createAdjacencyLists(edges, numberOfVertices); } /** Construct a graph from integer vertices 0, 1, and edge array */ protected AbstractGraph(int[][] edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) addVertex((V)(new Integer(i))); // vertices is {0, 1, ...} createAdjacencyLists(edges, numberOfVertices); } /** Create adjacency lists for each vertex */ private void createAdjacencyLists( int[][] edges, int numberOfVertices) { for (int i = 0; i < edges.length; i++) { int u = edges[i][0]; int v = edges[i][1]; addEdge(u, v); } } /** Create adjacency lists for each vertex */ private void createAdjacencyLists( List<Edge> edges, int numberOfVertices) { for (Edge edge: edges) { addEdge(edge.u, edge.v); } } @Override /** Return the number of vertices in the graph */ public int getSize() { return vertices.size(); } @Override /** Return the vertices in the graph */ public List<V> getVertices() { return vertices; } @Override /** Return the object for the specified vertex */ public V getVertex(int index) { return vertices.get(index); } @Override /** Return the index for the specified vertex object */ public int getIndex(V v) { return vertices.indexOf(v); } @Override /** Return the neighbors of the specified vertex */ public List<Integer> getNeighbors(int index) { return neighbors.get(index); } @Override /** Return the degree for a specified vertex */ public int getDegree(int v) { return neighbors.get(v).size(); } @Override /** Print the edges */ public void printEdges() { for (int u = 0; u < neighbors.size(); u++) { System.out.print(getVertex(u) + " (" + u + "): "); for (int j = 0; j < neighbors.get(u).size(); j++) { System.out.print("(" + u + ", " + neighbors.get(u).get(j) + ") "); } System.out.println(); } } @Override /** Clear graph */ public void clear() { vertices.clear(); neighbors.clear(); } @Override /** Add a vertex to the graph */ public boolean addVertex(V vertex) { if (!vertices.contains(vertex)) { vertices.add(vertex); neighbors.add(new ArrayList<Integer>()); return true; } else { return false; } } @Override /** Add an edge to the graph */ public boolean addEdge(int u, int v) { if (u < 0 || u > getSize() - 1) throw new IllegalArgumentException("No such index: " + u); if (v < 0 || v > getSize() - 1) throw new IllegalArgumentException("No such index: " + v); if (!neighbors.get(u).contains(v)) { neighbors.get(u).add(v); return true; } else { return false; } } /** Edge inner class inside the AbstractGraph class */ public static class Edge { public int u; // Starting vertex of the edge public int v; // Ending vertex of the edge /** Construct an edge for (u, v) */ public Edge(int u, int v) { this.u = u; this.v = v; } } @Override /** Obtain a DFS tree starting from vertex v */ /** To be discussed in Section 30.6 */ public Tree dfs(int v) { List<Integer> searchOrder = new ArrayList<Integer>(); int[] parent = new int[vertices.size()]; for (int i = 0; i < parent.length; i++) parent[i] = -1; // Initialize parent[i] to -1 // Mark visited vertices boolean[] isVisited = new boolean[vertices.size()]; // Recursively search dfs(v, parent, searchOrder, isVisited); // Return a search tree return new Tree(v, parent, searchOrder); } /** Recursive method for DFS search */ private void dfs(int v, int[] parent, List<Integer> searchOrder, boolean[] isVisited) { // Store the visited vertex searchOrder.add(v); isVisited[v] = true; // Vertex v visited for (int w : neighbors.get(v)) { if (!isVisited[w]) { parent[w] = v; // The parent of vertex i is v dfs(w, parent, searchOrder, isVisited); // Recursive search } } } @Override /** Starting bfs search from vertex v */ /** To be discussed in Section 27.7 */ public Tree bfs(int v) { List<Integer> searchOrder = new ArrayList<Integer>(); int[] parent = new int[vertices.size()]; for (int i = 0; i < parent.length; i++) parent[i] = -1; // Initialize parent[i] to -1 java.util.LinkedList<Integer> queue = new java.util.LinkedList<Integer>(); // list used as a queue boolean[] isVisited = new boolean[vertices.size()]; queue.offer(v); // Enqueue v isVisited[v] = true; // Mark it visited while (!queue.isEmpty()) { int u = queue.poll(); // Dequeue to u searchOrder.add(u); // u searched for (int w : neighbors.get(u)) { if (!isVisited[w]) { queue.offer(w); // Enqueue w parent[w] = u; // The parent of w is u isVisited[w] = true; // Mark it visited } } } return new Tree(v, parent, searchOrder); } /** Tree inner class inside the AbstractGraph class */ /** To be discussed in Section 27.5 */ public class Tree { private int root; // The root of the tree private int[] parent; // Store the parent of each vertex private List<Integer> searchOrder; // Store the search order /** Construct a tree with root, parent, and searchOrder */ public Tree(int root, int[] parent, List<Integer> searchOrder) { this.root = root; this.parent = parent; this.searchOrder = searchOrder; } /** Return the root of the tree */ public int getRoot() { return root; } /** Return the parent of vertex v */ public int getParent(int v) { return parent[v]; } /** Return an array representing search order */ public List<Integer> getSearchOrder() { return searchOrder; } /** Return number of vertices found */ public int getNumberOfVerticesFound() { return searchOrder.size(); } /** Return the path of vertices from a vertex to the root */ public List<V> getPath(int index) { ArrayList<V> path = new ArrayList<V>(); do { path.add(vertices.get(index)); index = parent[index]; } while (index != -1); return path; } /** Print a path from the root to vertex v */ public void printPath(int index) { List<V> path = getPath(index); System.out.print("A path from " + vertices.get(root) + " to " + vertices.get(index) + ": "); for (int i = path.size() - 1; i >= 0; i--) System.out.print(path.get(i) + " "); } /** Print the whole tree */ public void printTree() { System.out.println("Root is: " + vertices.get(root)); System.out.print("Edges: "); for (int i = 0; i < parent.length; i++) { if (parent[i] != -1) { // Display an edge System.out.print("(" + vertices.get(parent[i]) + ", " + vertices.get(i) + ") "); } } System.out.println(); } } } public static class WeightedGraph<V> extends AbstractGraph<V> { // Priority adjacency lists private List<PriorityQueue<WeightedEdge>> queues = new ArrayList<PriorityQueue<WeightedEdge>>(); /** Construct a WeightedGraph from edges and vertices in arrays */ public WeightedGraph() { } /** Construct a WeightedGraph from edges and vertices in arrays */ public WeightedGraph(int[][] edges, V[] vertices) { super(edges, vertices); createQueues(edges, vertices.length); } /** Construct a WeightedGraph from edges and vertices in List */ public WeightedGraph(int[][] edges, int numberOfVertices) { super(edges, numberOfVertices); createQueues(edges, numberOfVertices); } /** Construct a WeightedGraph for vertices 0, 1, 2 and edge list */ public WeightedGraph(List<WeightedEdge> edges, List<V> vertices) { super((List)edges, vertices); createQueues(edges, vertices.size()); } /** Construct a WeightedGraph from vertices 0, 1, and edge array */ public WeightedGraph(List<WeightedEdge> edges, int numberOfVertices) { super((List)edges, numberOfVertices); createQueues(edges, numberOfVertices); } /** Create priority adjacency lists from edge arrays */ private void createQueues(int[][] edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) { queues.add(new PriorityQueue<WeightedEdge>()); // Create a queue } for (int i = 0; i < edges.length; i++) { int u = edges[i][0]; int v = edges[i][1]; int weight = edges[i][2]; // Insert an edge into the queue queues.get(u).offer(new WeightedEdge(u, v, weight)); } } /** Create priority adjacency lists from edge lists */ private void createQueues(List<WeightedEdge> edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) { queues.add(new PriorityQueue<WeightedEdge>()); // Create a queue } for (WeightedEdge edge: edges) { queues.get(edge.u).offer(edge); // Insert an edge into the queue } } /** Display edges with weights */ public void printWeightedEdges() { for (int i = 0; i < queues.size(); i++) { System.out.print(getVertex(i) + " (" + i + "): "); for (WeightedEdge edge : queues.get(i)) { System.out.print("(" + edge.u + ", " + edge.v + ", " + edge.weight + ") "); } System.out.println(); } } /** Get the edges from the weighted graph */ public List<PriorityQueue<WeightedEdge>> getWeightedEdges() { return queues; } /** Clears the weighted graph */ public void clear() { vertices.clear(); neighbors.clear(); queues.clear(); } /** Add vertices to the weighted graph */ public boolean addVertex(V vertex) { if (super.addVertex(vertex)) { if (queues == null) queues = new ArrayList<PriorityQueue<WeightedEdge>>(); queues.add(new PriorityQueue<WeightedEdge>()); return true; } else { return false; } } /** Add edges to the weighted graph */ public void addEdge(int u, int v, double weight) { if (super.addEdge(u, v)) { queues.get(u).add(new WeightedEdge(u, v, weight)); } } /** Get a minimum spanning tree rooted at vertex 0 */ public MST getMinimumSpanningTree() { return getMinimumSpanningTree(0); } /* NEW IMPLEMENTATION */ /** Get a minimum spanning tree rooted at a specified vertex */ public MST getMinimumSpanningTree(int startingVertex) { List<Integer> T = new ArrayList<Integer>(); // T initially contains the startingVertex; T.add(startingVertex); // Track if a vertex is in T boolean[] isInT = new boolean[vertices.size()]; isInT[startingVertex] = true; int numberOfVertices = vertices.size(); // Number of vertices int[] parent = new int[numberOfVertices]; // Parent of a vertex // Initially set the parent of all vertices to -1 for (int i = 0; i < parent.length; i++) parent[i] = -1; double totalWeight = 0; // Total weight of the tree thus far // Clone the priority queue, so to keep the original queue intact List<PriorityQueue<WeightedEdge>> queues = deepClone(this.queues); // All vertices are found? while (T.size() < numberOfVertices) { // Search for the vertex with the smallest edge adjacent to // a vertex in T int v = -1; double smallestWeight = Double.MAX_VALUE; for (int u: T) { while (!queues.get(u).isEmpty() && isInT[queues.get(u).peek().v]) { // Remove the edge from queues[u] if the adjacent // vertex of u is already in T queues.get(u).remove(); } if (!queues.get(u).isEmpty()) { // Current smallest weight on an edge adjacent to u WeightedEdge edge = queues.get(u).peek(); if (edge.weight < smallestWeight) { v = edge.v; smallestWeight = edge.weight; // If v is added to the tree, u will be its parent parent[v] = u; } } } // End of for if (v != -1) { T.add(v); // Add a new vertex to the tree isInT[v] = true; totalWeight += smallestWeight; } else return null; // The tree is not connected, a partial MST is found } // End of while return new MST(startingVertex, parent, T, totalWeight); } /** Clone an array of queues */ private List<PriorityQueue<WeightedEdge>> deepClone( List<PriorityQueue<WeightedEdge>> queues) { List<PriorityQueue<WeightedEdge>> copiedQueues = new ArrayList<PriorityQueue<WeightedEdge>>(); for (int i = 0; i < queues.size(); i++) { copiedQueues.add(new PriorityQueue<WeightedEdge>()); for (WeightedEdge e : queues.get(i)) { copiedQueues.get(i).add(e); } } return copiedQueues; } /** MST is an inner class in WeightedGraph */ public class MST extends Tree { private double totalWeight; // Total weight of all edges in the tree public MST(int root, int[] parent, List<Integer> searchOrder, double totalWeight) { super(root, parent, searchOrder); this.totalWeight = totalWeight; } public double getTotalWeight() { return totalWeight; } } /** Find single source shortest paths */ public ShortestPathTree getShortestPath(int sourceVertex) { // T stores the vertices whose path found so far List<Integer> T = new ArrayList<Integer>(); // T initially contains the sourceVertex T.add(sourceVertex); // Track if a vertex is in T boolean[] isInT = new boolean[vertices.size()]; isInT[sourceVertex] = true; // parent[v] stores the previous vertex of v in the path int[] parent = new int[vertices.size()]; parent[sourceVertex] = -1; // The parent of source is set to -1 // cost[v] stores the cost of the path from v to the source double[] cost = new double[vertices.size()]; for (int i = 0; i < cost.length; i++) { cost[i] = Double.POSITIVE_INFINITY; // Initial cost set to infinity } cost[sourceVertex] = 0; // Cost of source is 0 // Get a copy of queues List<PriorityQueue<WeightedEdge>> queues = deepClone(this.queues); // Set cost for the neighbors of sourceVertex while (!queues.get(sourceVertex).isEmpty()) { WeightedEdge e = queues.get(sourceVertex).poll(); cost[e.v] = e.weight; parent[e.v] = sourceVertex; } // Expand T while (T.size() < vertices.size()) { // Find smallest cost v in V - T int u = -1; // Vertex to be determined double currentMinCost = Double.POSITIVE_INFINITY; for (int i = 0; i < getSize(); i++) { if (!isInT[i] && cost[i] < currentMinCost) { currentMinCost = cost[i]; u = i; } } if (u != -1) { T.add(u); // Add a new vertex to T isInT[u] = true; // Adjust cost[v] for v that is adjacent to u and v in V - T while (!queues.get(u).isEmpty()) { WeightedEdge e = queues.get(u).poll(); if (!isInT[e.v] && cost[e.v] > cost[u] + e.weight) { cost[e.v] = cost[u] + e.weight; parent[e.v] = u; } } } else return null; // s cannot reach to all vertices } // End of while // Create a ShortestPathTree return new ShortestPathTree(sourceVertex, parent, T, cost); } /** ShortestPathTree is an inner class in WeightedGraph */ public class ShortestPathTree extends Tree { private double[] cost; // cost[v] is the cost from v to source /** Construct a path */ public ShortestPathTree(int source, int[] parent, List<Integer> searchOrder, double[] cost) { super(source, parent, searchOrder); this.cost = cost; } /** Return the cost for a path from the root to vertex v */ public double getCost(int v) { return cost[v]; } /** Print paths from all vertices to the source */ public void printAllPaths() { System.out.println("All shortest paths from " + vertices.get(getRoot()) + " are:"); for (int i = 0; i < cost.length; i++) { printPath(i); // Print a path from i to the source System.out.println("(cost: " + cost[i] + ")"); // Path cost } } } } static class WeightedEdge extends AbstractGraph.Edge implements Comparable<WeightedEdge> { public double weight; // The weight on edge (u, v) /** Create a weighted edge on (u, v) */ public WeightedEdge(int u, int v, double weight) { super(u, v); this.weight = weight; } /** Compare two edges on weights */ public int compareTo(WeightedEdge edge) { if (weight > edge.weight) { return 1; } else if (weight == edge.weight) { return 0; } else { return -1; } } @Override public boolean equals(Object obj) { if (obj instanceof WeightedEdge) { WeightedEdge that = (WeightedEdge)obj; return (u == that.u) && (v == that.v) && (weight == that.weight); } else { return false; } } @Override public String toString() { return "(" + u + ", " + v + ", " + weight + ")"; } } }
No comments :
Post a Comment