26.4 (Parent reference for BST ) Suppose that the TreeNode class defined in BST contains a reference to the node’s parent, as shown in Programming Exercise 25.15. Implement the AVLTree class to support this change. Write a test program that adds numbers 1 , 2 , . . . , 100 to the tree and displays the paths for all leaf nodes.
import java.util.ArrayList; public class Exercise04 { public static void main(String[] args) { AVLTree<Integer> tree = new AVLTree<Integer>(); for (int i = 1; i <= 100; i++) { tree.insert(i); } tree.displayPath(); } static class AVLTree<E extends Comparable<E>> extends BST<E> { /** Create a default AVL tree */ public AVLTree() { } /** Create an AVL tree from an array of objects */ public AVLTree(E[] objects) { super(objects); } public void displayPath() { displayPath(root); } public void displayPath(TreeNode<E> node) { ArrayList<TreeNode<E>> list = getPath(node); for (TreeNode<E> treeNode : list) { System.out.print(treeNode.element + " "); } System.out.println(); if(node.left != null) { displayPath(node.left); } if(node.right != null) { displayPath(node.right); } } @Override /** Override createNewNode to create an AVLTreeNode */ protected AVLTreeNode<E> createNewNode(E e, TreeNode<E> parent) { return new AVLTreeNode<E>(e, parent); } @Override /** Insert an element and rebalance if necessary */ public boolean insert(E e) { boolean successful = super.insert(e); if (!successful) return false; // e is already in the tree else { balancePath(e); // Balance from e to the root if necessary } return true; // e is inserted } /** Update the height of a specified node */ private void updateHeight(AVLTreeNode<E> node) { if (node.left == null && node.right == null) // node is a leaf node.height = 0; else if (node.left == null) // node has no left subtree node.height = 1 + ((AVLTreeNode<E>) (node.right)).height; else if (node.right == null) // node has no right subtree node.height = 1 + ((AVLTreeNode<E>) (node.left)).height; else node.height = 1 + Math.max( ((AVLTreeNode<E>) (node.right)).height, ((AVLTreeNode<E>) (node.left)).height); } /** * Balance the nodes in the path from the specified node to the root if * necessary */ private void balancePath(E e) { java.util.ArrayList<TreeNode<E>> path = path(e); for (int i = path.size() - 1; i >= 0; i--) { AVLTreeNode<E> A = (AVLTreeNode<E>) (path.get(i)); updateHeight(A); switch (balanceFactor(A)) { case -2: if (balanceFactor((AVLTreeNode<E>) A.left) <= 0) { balanceLL(A); // Perform LL rotation } else { balanceLR(A); // Perform LR rotation } break; case +2: if (balanceFactor((AVLTreeNode<E>) A.right) >= 0) { balanceRR(A); // Perform RR rotation } else { balanceRL(A); // Perform RL rotation } } } } /** Return the balance factor of the node */ private int balanceFactor(AVLTreeNode<E> node) { if (node.right == null) // node has no right subtree return -node.height; else if (node.left == null) // node has no left subtree return +node.height; else return ((AVLTreeNode<E>) node.right).height - ((AVLTreeNode<E>) node.left).height; } /** Balance LL (see Figure 9.1) */ private void balanceLL(TreeNode<E> A) { TreeNode<E> parentOfA = A.parent; TreeNode<E> B = A.left; // A is left-heavy and B is left-heavy A.parent = B; if(B.right != null) { B.right.parent = A; } B.parent = parentOfA; if (A == root) { root = B; } else { if (parentOfA.left == A) { parentOfA.left = B; } else { parentOfA.right = B; } } A.left = B.right; // Make T2 the left subtree of A B.right = A; // Make A the left child of B updateHeight((AVLTreeNode<E>) A); updateHeight((AVLTreeNode<E>) B); } /** Balance LR (see Figure 9.1(c)) */ private void balanceLR(TreeNode<E> A) { TreeNode<E> parentOfA = A.parent; TreeNode<E> B = A.left; // A is left-heavy TreeNode<E> C = B.right; // B is right-heavy A.parent = C; B.parent = C; if(C.left != null) { C.left.parent = B; } if(C.right != null) { C.right.parent = A; } C.parent = parentOfA; if (A == root) { root = C; } else { if (parentOfA.left == A) { parentOfA.left = C; } else { parentOfA.right = C; } } A.left = C.right; // Make T3 the left subtree of A B.right = C.left; // Make T2 the right subtree of B C.left = B; C.right = A; // Adjust heights updateHeight((AVLTreeNode<E>) A); updateHeight((AVLTreeNode<E>) B); updateHeight((AVLTreeNode<E>) C); } /** Balance RR (see Figure 9.1(b)) */ private void balanceRR(TreeNode<E> A) { TreeNode<E> parentOfA = A.parent; TreeNode<E> B = A.right; // A is right-heavy and B is right-heavy A.parent = B; if(B.left != null) { B.left.parent = A; } B.parent = parentOfA; if (A == root) { root = B; } else { if (parentOfA.left == A) { parentOfA.left = B; } else { parentOfA.right = B; } } A.right = B.left; // Make T2 the right subtree of A B.left = A; updateHeight((AVLTreeNode<E>) A); updateHeight((AVLTreeNode<E>) B); } /** Balance RL (see Figure 9.1(d)) */ private void balanceRL(TreeNode<E> A) { TreeNode<E> parentOfA = A.parent; TreeNode<E> B = A.right; // A is right-heavy TreeNode<E> C = B.left; // B is left-heavy A.parent = C; B.parent = C; if(C.left != null) { C.left.parent = A; } if(C.right != null) { C.right.parent = B; } C.parent = parentOfA; if (A == root) { root = C; } else { if (parentOfA.left == A) { parentOfA.left = C; } else { parentOfA.right = C; } } A.right = C.left; // Make T2 the right subtree of A B.left = C.right; // Make T3 the left subtree of B C.left = A; C.right = B; // Adjust heights updateHeight((AVLTreeNode<E>) A); updateHeight((AVLTreeNode<E>) B); updateHeight((AVLTreeNode<E>) C); } @Override /** Delete an element from the binary tree. * Return true if the element is deleted successfully * Return false if the element is not in the tree */ public boolean delete(E element) { if (root == null) return false; // Element is not in the tree // Locate the node to be deleted and also locate its parent node TreeNode<E> parent = null; TreeNode<E> current = root; while (current != null) { if (element.compareTo(current.element) < 0) { parent = current; current = current.left; } else if (element.compareTo(current.element) > 0) { parent = current; current = current.right; } else break; // Element is in the tree pointed by current } if (current == null) return false; // Element is not in the tree // Case 1: current has no left children (See Figure 23.6) if (current.left == null) { // Connect the parent with the right child of the current node if (parent == null) { root = current.right; } else { if (element.compareTo(parent.element) < 0) parent.left = current.right; else parent.right = current.right; // Balance the tree if necessary balancePath(parent.element); } } else { // Case 2: The current node has a left child // Locate the rightmost node in the left subtree of // the current node and also its parent TreeNode<E> parentOfRightMost = current; TreeNode<E> rightMost = current.left; while (rightMost.right != null) { parentOfRightMost = rightMost; rightMost = rightMost.right; // Keep going to the right } // Replace the element in current by the element in rightMost current.element = rightMost.element; // Eliminate rightmost node if (parentOfRightMost.right == rightMost) parentOfRightMost.right = rightMost.left; else // Special case: parentOfRightMost is current parentOfRightMost.left = rightMost.left; // Balance the tree if necessary balancePath(parentOfRightMost.element); } size--; return true; // Element inserted } /** AVLTreeNode is TreeNode plus height */ protected static class AVLTreeNode<E extends Comparable<E>> extends BST.TreeNode<E> { protected int height = 0; // New data field public AVLTreeNode(E o, TreeNode<E> parent) { super(o, parent); } } } static class BST<E extends Comparable<E>> extends AbstractTree<E> { protected TreeNode<E> root; protected int size = 0; /** Returns the parent for the specified node. */ public TreeNode<E> getParent(TreeNode<E> node) { return node.parent; } /** Returns the path from the specified node to the root * in an array list. */ public ArrayList<TreeNode<E>> getPath(TreeNode<E> node) { ArrayList<TreeNode<E>> result = new ArrayList<>(); while(node.parent != null) { result.add(node); node = node.parent; } result.add(node); return result; } /** Create a default binary tree */ public BST() { } /** Create a binary tree from an array of objects */ public BST(E[] objects) { for (int i = 0; i < objects.length; i++) insert(objects[i]); } @Override /** Returns true if the element is in the tree */ public boolean search(E e) { TreeNode<E> current = root; // Start from the root while (current != null) { if (e.compareTo(current.element) < 0) { current = current.left; } else if (e.compareTo(current.element) > 0) { current = current.right; } else // element matches current.element return true; // Element is found } return false; } @Override /** Insert element o into the binary tree * Return true if the element is inserted successfully */ public boolean insert(E e) { if (root == null) root = createNewNode(e, null); // Create a new root else { // Locate the parent node TreeNode<E> parent = null; TreeNode<E> current = root; while (current != null) if (e.compareTo(current.element) < 0) { parent = current; current = current.left; } else if (e.compareTo(current.element) > 0) { parent = current; current = current.right; } else return false; // Duplicate node not inserted // Create the new node and attach it to the parent node if (e.compareTo(parent.element) < 0) parent.left = createNewNode(e, parent); else parent.right = createNewNode(e, parent); } size++; return true; // Element inserted } protected TreeNode<E> createNewNode(E e, TreeNode<E> parent) { return new TreeNode<E>(e, parent); } @Override /** Inorder traversal from the root*/ public void inorder() { inorder(root); } /** Inorder traversal from a subtree */ protected void inorder(TreeNode<E> root) { if (root == null) return; inorder(root.left); System.out.print(root.element + " "); inorder(root.right); } @Override /** Postorder traversal from the root */ public void postorder() { postorder(root); } /** Postorder traversal from a subtree */ protected void postorder(TreeNode<E> root) { if (root == null) return; postorder(root.left); postorder(root.right); System.out.print(root.element + " "); } @Override /** Preorder traversal from the root */ public void preorder() { preorder(root); } /** Preorder traversal from a subtree */ protected void preorder(TreeNode<E> root) { if (root == null) return; System.out.print(root.element + " "); preorder(root.left); preorder(root.right); } /** * This inner class is static, because it does not access any instance * members defined in its outer class */ public static class TreeNode<E extends Comparable<E>> { protected E element; protected TreeNode<E> left; protected TreeNode<E> right; protected TreeNode<E> parent; public TreeNode(E e, TreeNode<E> parent) { element = e; this.parent = parent; } } @Override /** Get the number of nodes in the tree */ public int getSize() { return size; } /** Returns the root of the tree */ public TreeNode<E> getRoot() { return root; } /** Returns a path from the root leading to the specified element */ public java.util.ArrayList<TreeNode<E>> path(E e) { java.util.ArrayList<TreeNode<E>> list = new java.util.ArrayList<TreeNode<E>>(); TreeNode<E> current = root; // Start from the root while (current != null) { list.add(current); // Add the node to the list if (e.compareTo(current.element) < 0) { current = current.left; } else if (e.compareTo(current.element) > 0) { current = current.right; } else break; } return list; // Return an array of nodes } @Override /** Delete an element from the binary tree. * Return true if the element is deleted successfully * Return false if the element is not in the tree */ public boolean delete(E e) { // Locate the node to be deleted and also locate its parent node TreeNode<E> parent = null; TreeNode<E> current = root; while (current != null) { if (e.compareTo(current.element) < 0) { parent = current; current = current.left; } else if (e.compareTo(current.element) > 0) { parent = current; current = current.right; } else break; // Element is in the tree pointed at by current } if (current == null) return false; // Element is not in the tree // Case 1: current has no left children if (current.left == null) { // Connect the parent with the right child of the current node if (parent == null) { root = current.right; } else { if (e.compareTo(parent.element) < 0) parent.left = current.right; else parent.right = current.right; } } else { // Case 2: The current node has a left child // Locate the rightmost node in the left subtree of // the current node and also its parent TreeNode<E> parentOfRightMost = current; TreeNode<E> rightMost = current.left; while (rightMost.right != null) { parentOfRightMost = rightMost; rightMost = rightMost.right; // Keep going to the right } // Replace the element in current by the element in rightMost current.element = rightMost.element; // Eliminate rightmost node if (parentOfRightMost.right == rightMost) parentOfRightMost.right = rightMost.left; else // Special case: parentOfRightMost == current parentOfRightMost.left = rightMost.left; } size--; return true; // Element inserted } @Override /** Obtain an iterator. Use inorder. */ public java.util.Iterator<E> iterator() { return new InorderIterator(); } // Inner class InorderIterator private class InorderIterator implements java.util.Iterator<E> { // Store the elements in a list private java.util.ArrayList<E> list = new java.util.ArrayList<E>(); private int current = 0; // Point to the current element in list public InorderIterator() { inorder(); // Traverse binary tree and store elements in list } /** Inorder traversal from the root */ private void inorder() { inorder(root); } /** Inorder traversal from a subtree */ private void inorder(TreeNode<E> root) { if (root == null) return; inorder(root.left); list.add(root.element); inorder(root.right); } @Override /** More elements for traversing? */ public boolean hasNext() { if (current < list.size()) return true; return false; } @Override /** Get the current element and move to the next */ public E next() { return list.get(current++); } @Override /** Remove the current element */ public void remove() { delete(list.get(current)); // Delete the current element list.clear(); // Clear the list inorder(); // Rebuild the list } } /** Remove all elements from the tree */ public void clear() { root = null; size = 0; } } static abstract class AbstractTree<E> implements Tree<E> { @Override /** Inorder traversal from the root*/ public void inorder() { } @Override /** Postorder traversal from the root */ public void postorder() { } @Override /** Preorder traversal from the root */ public void preorder() { } @Override /** Return true if the tree is empty */ public boolean isEmpty() { return getSize() == 0; } @Override /** Return an iterator for the tree */ public java.util.Iterator<E> iterator() { return null; } } interface Tree<E> extends Iterable<E> { /** Return true if the element is in the tree */ public boolean search(E e); /** * Insert element o into the binary tree Return true if the element is * inserted successfully */ public boolean insert(E e); /** * Delete the specified element from the tree Return true if the element * is deleted successfully */ public boolean delete(E e); /** Inorder traversal from the root */ public void inorder(); /** Postorder traversal from the root */ public void postorder(); /** Preorder traversal from the root */ public void preorder(); /** Get the number of nodes in the tree */ public int getSize(); /** Return true if the tree is empty */ public boolean isEmpty(); public java.util.Iterator<E> iterator(); } }
No comments :
Post a Comment