Tuesday, 21 February 2017

Chapter 28 Exercise 18, Introduction to Java Programming, Tenth Edition Y. Daniel LiangY.

28.18 (Knight’s Tour cycle) Rewrite KnightTourApp.java in the case study in Supplement VI.E to find a knight’s tour that visits each square in a chessboard and returns to the starting square. Reduce the Knight’s Tour cycle problem to the problem of finding a Hamiltonian cycle.


import java.util.ArrayList;
import java.util.List;

import javax.swing.*;

import java.awt.*;
import java.awt.event.*;

public class Exercise18 extends JApplet {
 private static final long serialVersionUID = 1L;
 private KnightTourModel model = new KnightTourModel();
 private PaintKnightTour paintKnightTour = new PaintKnightTour();
 private JTextField jtfRow = new JTextField(2);
 private JTextField jtfColumn = new JTextField(2);
 private JButton jbtSearch = new JButton("Search");

 public Exercise18() {
  JPanel panel = new JPanel();
  panel.add(new JLabel("Specify a starting position, row: "));
  panel.add(jtfRow);
  panel.add(new JLabel("column: "));
  panel.add(jtfColumn);
  panel.add(jbtSearch);
  add(paintKnightTour, BorderLayout.CENTER);
  add(panel, BorderLayout.SOUTH);

  jbtSearch.addActionListener(new ActionListener() {
   @Override
   public void actionPerformed(ActionEvent e) {
    int position = Integer.parseInt(jtfRow.getText()) * 8
      + Integer.parseInt(jtfColumn.getText());
    paintKnightTour.displayPath(model.getHamiltonianPath(position));
   }
  });
 }

 /** A panel to paint the chessboard and the knight tour */
 private static class PaintKnightTour extends JPanel {
  private static final long serialVersionUID = 1L;
  private List<Integer> path; // A Knight tour path

  public PaintKnightTour() {
   setBorder(BorderFactory.createLineBorder(Color.black, 1));
  }

  public void displayPath(List<Integer> path) {
   this.path = path;
   repaint();
  }

  @Override
  protected void paintComponent(Graphics g) {
   super.paintComponent(g);

   // Display horizontal lines
   for (int i = 0; i < 8; i++)
    g.drawLine(0, i * getHeight() / 8, getWidth(), i * getHeight()
      / 8);

   // Display vertical lines
   for (int i = 0; i < 8; i++)
    g.drawLine(i * getWidth() / 8, 0, (int) i * getWidth() / 8,
      getHeight());

   if (path == null)
    return; // No path to be displayed yet

   for (int i = 0; i < path.size() - 1; i++) {
    int u = path.get(i);
    int v = path.get(i + 1);

    // Knight moves from u and v. Draw a line to connect u and v
    g.drawLine((u % 8) * getWidth() / 8 + getWidth() / 16, (u / 8)
      * getHeight() / 8 + getHeight() / 16, (v % 8)
      * getWidth() / 8 + getWidth() / 16, (v / 8)
      * getHeight() / 8 + getHeight() / 16);
   }
  }
 }

 public static void main(String[] args) {
  // Create a frame
  JFrame frame = new JFrame("Knight's Tour");

  // Create an instance of the applet
  Exercise18 applet = new Exercise18();

  // Add the applet instance to the frame
  frame.add(applet, BorderLayout.CENTER);

  // Display the frame
  frame.setSize(400, 400);
  frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
  frame.setLocationRelativeTo(null); // Center the frame
  frame.setVisible(true);
 }

 static class KnightTourModel {
  private UnweightedGraph<Integer> graph; // Define a graph

  public KnightTourModel() {
   // (u, v) is an edge if a knight can move from u and v
   ArrayList<AbstractGraph.Edge> edges = getEdges();

   // Create a graph with 64 vertices labeled 0 to 63
   graph = new UnweightedGraph<Integer>(edges, 64);
  }

  /** Get a Hamiltonian path starting from vertex v */
  public List<Integer> getHamiltonianPath(int v) {
   return graph.getHamiltonianPath(v);
  }

  /** Create edges for the graph */
  public static ArrayList<AbstractGraph.Edge> getEdges() {
   ArrayList<AbstractGraph.Edge> edges = new ArrayList<AbstractGraph.Edge>(); // Store
                      // edges
   for (int i = 0; i < 8; i++)
    for (int j = 0; j < 8; j++) {
     int u = i * 8 + j; // The vertex label

     // Check eight possible edges from u
     if (i - 1 >= 0 && j - 2 >= 0) {
      int v1 = (i - 1) * 8 + (j - 2);
      edges.add(new AbstractGraph.Edge(u, v1));
     }

     if (i - 2 >= 0 && j - 1 >= 0) {
      int v2 = (i - 2) * 8 + (j - 1);
      edges.add(new AbstractGraph.Edge(u, v2));
     }

     if (i - 2 >= 0 && j + 1 <= 7) {
      int v3 = (i - 2) * 8 + (j + 1);
      edges.add(new AbstractGraph.Edge(u, v3));
     }

     if (i - 1 >= 0 && j + 2 <= 7) {
      int v4 = (i - 1) * 8 + (j + 2);
      edges.add(new AbstractGraph.Edge(u, v4));
     }

     if (i + 1 <= 7 && j + 2 <= 7) {
      int v5 = (i + 1) * 8 + (j + 2);
      edges.add(new AbstractGraph.Edge(u, v5));
     }

     if (i + 2 <= 7 && j + 1 <= 7) {
      int v6 = (i + 2) * 8 + (j + 1);
      edges.add(new AbstractGraph.Edge(u, v6));
     }

     if (i + 2 <= 7 && j - 1 >= 0) {
      int v7 = (i + 2) * 8 + (j - 1);
      edges.add(new AbstractGraph.Edge(u, v7));
     }

     if (i + 1 <= 7 && j - 2 >= 0) {
      int v8 = (i + 1) * 8 + (j - 2);
      edges.add(new AbstractGraph.Edge(u, v8));
     }
    }

   return edges;
  }
 }
 static class UnweightedGraph<V> extends AbstractGraph<V> {
  /** Construct an empty graph */
  public UnweightedGraph() {
  }

  /** Construct a graph from edges and vertices stored in arrays */
  public UnweightedGraph(int[][] edges, V[] vertices) {
   super(edges, vertices);
  }

  /** Construct a graph from edges and vertices stored in List */
  public UnweightedGraph(List<Edge> edges, List<V> vertices) {
   super(edges, vertices);
  }

  /** Construct a graph for integer vertices 0, 1, 2 and edge list */
  public UnweightedGraph(List<Edge> edges, int numberOfVertices) {
   super(edges, numberOfVertices);
  }

  /** Construct a graph from integer vertices 0, 1, and edge array */
  public UnweightedGraph(int[][] edges, int numberOfVertices) {
   super(edges, numberOfVertices);
  }
 }

 static abstract class AbstractGraph<V> implements Graph<V> {
  protected List<V> vertices = new ArrayList<V>(); // Store vertices
  protected List<List<Integer>> neighbors = new ArrayList<List<Integer>>(); // Adjacency
                     // lists

  /** Construct an empty graph */
  protected AbstractGraph() {
  }

  /** Construct a graph from edges and vertices stored in arrays */
  protected AbstractGraph(int[][] edges, V[] vertices) {
   for (int i = 0; i < vertices.length; i++)
    this.vertices.add(vertices[i]);

   createAdjacencyLists(edges, vertices.length);
  }

  /** Construct a graph from edges and vertices stored in List */
  protected AbstractGraph(List<Edge> edges, List<V> vertices) {
   for (int i = 0; i < vertices.size(); i++)
    this.vertices.add(vertices.get(i));

   createAdjacencyLists(edges, vertices.size());
  }

  /** Construct a graph for integer vertices 0, 1, 2 and edge list */
  @SuppressWarnings("unchecked")
  protected AbstractGraph(List<Edge> edges, int numberOfVertices) {
   for (int i = 0; i < numberOfVertices; i++)
    vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...}

   createAdjacencyLists(edges, numberOfVertices);
  }

  /** Construct a graph from integer vertices 0, 1, and edge array */
  @SuppressWarnings("unchecked")
  protected AbstractGraph(int[][] edges, int numberOfVertices) {
   for (int i = 0; i < numberOfVertices; i++)
    vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...}

   createAdjacencyLists(edges, numberOfVertices);
  }
  
  public List<Integer> getHamiltonianPath(int u) {
   List<Integer> searchOrder = new ArrayList<Integer>();
   int[] parent = new int[vertices.size()];
   for (int i = 0; i < parent.length; i++) {
    parent[i] = -1;
   }

   boolean[] isVisited = new boolean[vertices.size()];

   return getAllCycles(u, u, searchOrder, isVisited);
  }

  private List<Integer> getAllCycles(int first, int v, List<Integer> searchOrder, boolean[] isVisited) {
   searchOrder.add(v);
   isVisited[v] = true;

   for (int i : neighbors.get(v)) {
    if (!isVisited[i]) {
     boolean[] newIsVisited = java.util.Arrays.copyOf(isVisited, isVisited.length);
     @SuppressWarnings("unchecked")
     List<Integer> newSearchOrder = (List<Integer>) ((ArrayList<Integer>)searchOrder).clone();
     List<Integer> result = getAllCycles(first, i, newSearchOrder, newIsVisited);
     if(result != null) {
      return result;
     }
    } else if(first == i) {
     if(searchOrder.size() == vertices.size()) {
      return searchOrder; 
     }
    }
   }
   return null;
  }


  /** Create adjacency lists for each vertex */
  private void createAdjacencyLists(int[][] edges, int numberOfVertices) {
   // Create a linked list
   for (int i = 0; i < numberOfVertices; i++) {
    neighbors.add(new ArrayList<Integer>());
   }

   for (int i = 0; i < edges.length; i++) {
    int u = edges[i][0];
    int v = edges[i][1];
    neighbors.get(u).add(v);
   }
  }

  /** Create adjacency lists for each vertex */
  private void createAdjacencyLists(List<Edge> edges, int numberOfVertices) {
   // Create a linked list for each vertex
   for (int i = 0; i < numberOfVertices; i++) {
    neighbors.add(new ArrayList<Integer>());
   }

   for (Edge edge : edges) {
    neighbors.get(edge.u).add(edge.v);
   }
  }

  @Override
  /** Return the number of vertices in the graph */
  public int getSize() {
   return vertices.size();
  }

  @Override
  /** Return the vertices in the graph */
  public List<V> getVertices() {
   return vertices;
  }

  @Override
  /** Return the object for the specified vertex */
  public V getVertex(int index) {
   return vertices.get(index);
  }

  @Override
  /** Return the index for the specified vertex object */
  public int getIndex(V v) {
   return vertices.indexOf(v);
  }

  @Override
  /** Return the neighbors of the specified vertex */
  public List<Integer> getNeighbors(int index) {
   return neighbors.get(index);
  }

  @Override
  /** Return the degree for a specified vertex */
  public int getDegree(int v) {
   return neighbors.get(v).size();
  }

  @Override
  /** Print the edges */
  public void printEdges() {
   for (int u = 0; u < neighbors.size(); u++) {
    System.out.print(getVertex(u) + " (" + u + "): ");
    for (int j = 0; j < neighbors.get(u).size(); j++) {
     System.out.print("(" + u + ", " + neighbors.get(u).get(j)
       + ") ");
    }
    System.out.println();
   }
  }

  @Override
  /** Clear graph */
  public void clear() {
   vertices.clear();
   neighbors.clear();
  }

  @Override
  /** Add a vertex to the graph */
  public void addVertex(V vertex) {
   vertices.add(vertex);
   neighbors.add(new ArrayList<Integer>());
  }

  @Override
  /** Add an edge to the graph */
  public void addEdge(int u, int v) {
   neighbors.get(u).add(v);
   neighbors.get(v).add(u);
  }

  /** Edge inner class inside the AbstractGraph class */
  public static class Edge {
   public int u; // Starting vertex of the edge
   public int v; // Ending vertex of the edge

   /** Construct an edge for (u, v) */
   public Edge(int u, int v) {
    this.u = u;
    this.v = v;
   }
  }

  @Override
  /** Obtain a DFS tree starting from vertex v */
  /** To be discussed in Section 27.6 */
  public Tree dfs(int v) {
   List<Integer> searchOrder = new ArrayList<Integer>();
   int[] parent = new int[vertices.size()];
   for (int i = 0; i < parent.length; i++)
    parent[i] = -1; // Initialize parent[i] to -1

   // Mark visited vertices
   boolean[] isVisited = new boolean[vertices.size()];

   // Recursively search
   dfs(v, parent, searchOrder, isVisited);

   // Return a search tree
   return new Tree(v, parent, searchOrder);
  }

  /** Recursive method for DFS search */
  private void dfs(int v, int[] parent, List<Integer> searchOrder,
    boolean[] isVisited) {
   // Store the visited vertex
   searchOrder.add(v);
   isVisited[v] = true; // Vertex v visited

   for (int i : neighbors.get(v)) {
    if (!isVisited[i]) {
     parent[i] = v; // The parent of vertex i is v
     dfs(i, parent, searchOrder, isVisited); // Recursive search
    }
   }
  }

  @Override
  /** Starting bfs search from vertex v */
  /** To be discussed in Section 27.7 */
  public Tree bfs(int v) {
   List<Integer> searchOrder = new ArrayList<Integer>();
   int[] parent = new int[vertices.size()];
   for (int i = 0; i < parent.length; i++)
    parent[i] = -1; // Initialize parent[i] to -1

   java.util.LinkedList<Integer> queue = new java.util.LinkedList<Integer>(); // list
                      // used
                      // as
                      // a
                      // queue
   boolean[] isVisited = new boolean[vertices.size()];
   queue.offer(v); // Enqueue v
   isVisited[v] = true; // Mark it visited

   while (!queue.isEmpty()) {
    int u = queue.poll(); // Dequeue to u
    searchOrder.add(u); // u searched
    for (int w : neighbors.get(u)) {
     if (!isVisited[w]) {
      queue.offer(w); // Enqueue w
      parent[w] = u; // The parent of w is u
      isVisited[w] = true; // Mark it visited
     }
    }
   }

   return new Tree(v, parent, searchOrder);
  }

  /** Tree inner class inside the AbstractGraph class */
  /** To be discussed in Section 27.5 */
  public class Tree {
   private int root; // The root of the tree
   private int[] parent; // Store the parent of each vertex
   private List<Integer> searchOrder; // Store the search order

   /** Construct a tree with root, parent, and searchOrder */
   public Tree(int root, int[] parent, List<Integer> searchOrder) {
    this.root = root;
    this.parent = parent;
    this.searchOrder = searchOrder;
   }

   /** Return the root of the tree */
   public int getRoot() {
    return root;
   }

   /** Return the parent of vertex v */
   public int getParent(int v) {
    return parent[v];
   }

   /** Return an array representing search order */
   public List<Integer> getSearchOrder() {
    return searchOrder;
   }

   /** Return number of vertices found */
   public int getNumberOfVerticesFound() {
    return searchOrder.size();
   }

   /** Return the path of vertices from a vertex to the root */
   public List<V> getPath(int index) {
    ArrayList<V> path = new ArrayList<V>();

    do {
     path.add(vertices.get(index));
     index = parent[index];
    } while (index != -1);

    return path;
   }

   /** Print a path from the root to vertex v */
   public void printPath(int index) {
    List<V> path = getPath(index);
    System.out.print("A path from " + vertices.get(root) + " to "
      + vertices.get(index) + ": ");
    for (int i = path.size() - 1; i >= 0; i--)
     System.out.print(path.get(i) + " ");
   }

   /** Print the whole tree */
   public void printTree() {
    System.out.println("Root is: " + vertices.get(root));
    System.out.print("Edges: ");
    for (int i = 0; i < parent.length; i++) {
     if (parent[i] != -1) {
      // Display an edge
      System.out.print("(" + vertices.get(parent[i]) + ", "
        + vertices.get(i) + ") ");
     }
    }
    System.out.println();
   }
  }
 }

 interface Graph<V> {
  /** Return the number of vertices in the graph */
  public int getSize();

  /** Return the vertices in the graph */
  public java.util.List<V> getVertices();

  /** Return the object for the specified vertex index */
  public V getVertex(int index);

  /** Return the index for the specified vertex object */
  public int getIndex(V v);

  /** Return the neighbors of vertex with the specified index */
  public java.util.List<Integer> getNeighbors(int index);

  /** Return the degree for a specified vertex */
  public int getDegree(int v);

  /** Print the edges */
  public void printEdges();

  /** Clear graph */
  public void clear();

  /** Add a vertex to the graph */
  public void addVertex(V vertex);

  /** Add an edge to the graph */
  public void addEdge(int u, int v);

  /** Obtain a depth-first search tree */
  public AbstractGraph<V>.Tree dfs(int v);

  /** Obtain a breadth-first search tree */
  public AbstractGraph<V>.Tree bfs(int v);
 }

}

No comments :

Post a Comment