28.12 (Variation of the nine tails problem) In the nine tails problem, when you flip a coin, the horizontal and vertical neighboring cells are also flipped. Rewrite the program, assuming that all neighboring cells including the diagonal neighbors are also flipped.
import java.util.ArrayList; import java.util.List; import javax.swing.*; import java.awt.*; import java.awt.event.*; public class Exercise12 extends JApplet { private static final long serialVersionUID = 1L; private NineTailPanel nineTailPanel = new NineTailPanel(); private JPanel jPanel1 = new JPanel(new FlowLayout()); public Exercise12() { jPanel1.add(nineTailPanel); setLayout(new BorderLayout()); add(jPanel1, BorderLayout.CENTER); JPanel jPanel2 = new JPanel(new FlowLayout()); JButton jButton1 = new JButton("Solve"); JButton jButton2 = new JButton("Start Over"); jPanel2.add(jButton1); jPanel2.add(jButton2); add(jPanel2, BorderLayout.SOUTH); jButton1.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent e) { char[] initialNode = nineTailPanel.getInitialNode(); NineTailModel model = new NineTailModel(); java.util.List<Integer> path = model.getShortestPath(NineTailModel.getIndex(initialNode)); for (int i = 1; i < path.size(); i++) { jPanel1.add(new NineTailPanel(NineTailModel.getNode(path.get(i).intValue()), NineTailModel.getNode(path.get(i - 1).intValue()))); } jPanel1.updateUI(); } }); jButton2.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent e) { jPanel1.removeAll(); nineTailPanel = new NineTailPanel(); jPanel1.add(nineTailPanel); jPanel1.updateUI(); } }); } static class NineTailPanel extends JPanel { private static final long serialVersionUID = 1L; private int matrixSize = 3; private int coinSize = 50; private char[] initialNode = new char[matrixSize * matrixSize]; private char[] previous = new char[matrixSize * matrixSize]; public NineTailPanel() { for (int i = 0; i < initialNode.length; i++) { initialNode[i] = 'H'; } previous = null; addMouseListener(new MouseAdapter() { @Override public void mouseReleased(MouseEvent e) { changeState((e.getX() / coinSize) * matrixSize + (e.getY() / coinSize)); } }); } public NineTailPanel(char[] initialNode, char[] previous) { for (int i = 0; i < initialNode.length; i++) { this.initialNode[i] = initialNode[i]; this.previous[i] = previous[i]; } } public char[] getInitialNode() { return initialNode; } void changeState(int i) { if(initialNode[i] == 'H') { initialNode[i] = 'T'; } else { initialNode[i] = 'H'; } repaint(); } @Override protected void paintComponent(Graphics g) { super.paintComponent(g); g.setFont(new Font("Monospaced", Font.BOLD, 26)); for (int i = 0; i < matrixSize; i++) { for (int j = 0; j < matrixSize; j++) { g.drawRect(i * coinSize, j * coinSize, coinSize, coinSize); if((previous != null) && (initialNode[i * matrixSize + j] != previous[i * matrixSize + j])) { g.setColor(Color.RED); g.drawString(initialNode[i * matrixSize + j] + "", i * coinSize + coinSize / 3, j * coinSize + 2 * (coinSize / 3)); g.setColor(Color.BLACK); } else { g.drawString(initialNode[i * matrixSize + j] + "", i * coinSize + coinSize / 3, j * coinSize + 2 * (coinSize / 3)); } } } } @Override public Dimension getPreferredSize() { return new Dimension(matrixSize * coinSize + 1, matrixSize * coinSize + 1); } } public static void main(String[] args) { JFrame frame = new JFrame("Exercise12"); JApplet applet = new Exercise12(); frame.add(applet); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setSize(800, 500); frame.setMinimumSize(new Dimension(frame.getWidth(), frame.getHeight())); frame.setLocationRelativeTo(null); frame.setVisible(true); } static class NineTailModel { public final static int NUMBER_OF_NODES = 512; protected AbstractGraph<Integer>.Tree tree; // Define a tree /** Construct a model */ public NineTailModel() { // Create edges List<AbstractGraph.Edge> edges = getEdges(); // Create a graph UnweightedGraph<Integer> graph = new UnweightedGraph<Integer>( edges, NUMBER_OF_NODES); // Obtain a BSF tree rooted at the target node tree = graph.bfs(511); } /** Create all edges for the graph */ private List<AbstractGraph.Edge> getEdges() { List<AbstractGraph.Edge> edges = new ArrayList<AbstractGraph.Edge>(); // Store // edges for (int u = 0; u < NUMBER_OF_NODES; u++) { for (int k = 0; k < 9; k++) { char[] node = getNode(u); // Get the node for vertex u if (node[k] == 'H') { int v = getFlippedNode(node, k); // Add edge (v, u) for a legal move from node u to node // v edges.add(new AbstractGraph.Edge(v, u)); } } } return edges; } public static int getFlippedNode(char[] node, int position) { int row = position / 3; int column = position % 3; flipACell(node, row, column); flipACell(node, row - 1, column); flipACell(node, row + 1, column); flipACell(node, row, column - 1); flipACell(node, row, column + 1); flipACell(node, row + 1, column + 1); flipACell(node, row + 1, column - 1); flipACell(node, row - 1, column - 1); flipACell(node, row - 1, column + 1); return getIndex(node); } public static void flipACell(char[] node, int row, int column) { if (row >= 0 && row <= 2 && column >= 0 && column <= 2) { // Within the boundary if (node[row * 3 + column] == 'H') node[row * 3 + column] = 'T'; // Flip from H to T else node[row * 3 + column] = 'H'; // Flip from T to H } } public static int getIndex(char[] node) { int result = 0; for (int i = 0; i < 9; i++) if (node[i] == 'T') result = result * 2 + 1; else result = result * 2 + 0; return result; } public static char[] getNode(int index) { char[] result = new char[9]; for (int i = 0; i < 9; i++) { int digit = index % 2; if (digit == 0) result[8 - i] = 'H'; else result[8 - i] = 'T'; index = index / 2; } return result; } public List<Integer> getShortestPath(int nodeIndex) { return tree.getPath(nodeIndex); } public static void printNode(char[] node) { for (int i = 0; i < 9; i++) if (i % 3 != 2) System.out.print(node[i]); else System.out.println(node[i]); System.out.println(); } } static class UnweightedGraph<V> extends AbstractGraph<V> { /** Construct an empty graph */ public UnweightedGraph() { } /** Construct a graph from edges and vertices stored in arrays */ public UnweightedGraph(int[][] edges, V[] vertices) { super(edges, vertices); } /** Construct a graph from edges and vertices stored in List */ public UnweightedGraph(List<Edge> edges, List<V> vertices) { super(edges, vertices); } /** Construct a graph for integer vertices 0, 1, 2 and edge list */ public UnweightedGraph(List<Edge> edges, int numberOfVertices) { super(edges, numberOfVertices); } /** Construct a graph from integer vertices 0, 1, and edge array */ public UnweightedGraph(int[][] edges, int numberOfVertices) { super(edges, numberOfVertices); } } static abstract class AbstractGraph<V> implements Graph<V> { protected List<V> vertices = new ArrayList<V>(); // Store vertices protected List<List<Integer>> neighbors = new ArrayList<List<Integer>>(); // Adjacency // lists /** Construct an empty graph */ protected AbstractGraph() { } /** Construct a graph from edges and vertices stored in arrays */ protected AbstractGraph(int[][] edges, V[] vertices) { for (int i = 0; i < vertices.length; i++) this.vertices.add(vertices[i]); createAdjacencyLists(edges, vertices.length); } /** Construct a graph from edges and vertices stored in List */ protected AbstractGraph(List<Edge> edges, List<V> vertices) { for (int i = 0; i < vertices.size(); i++) this.vertices.add(vertices.get(i)); createAdjacencyLists(edges, vertices.size()); } /** Construct a graph for integer vertices 0, 1, 2 and edge list */ @SuppressWarnings("unchecked") protected AbstractGraph(List<Edge> edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...} createAdjacencyLists(edges, numberOfVertices); } /** Construct a graph from integer vertices 0, 1, and edge array */ @SuppressWarnings("unchecked") protected AbstractGraph(int[][] edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...} createAdjacencyLists(edges, numberOfVertices); } /** Create adjacency lists for each vertex */ private void createAdjacencyLists(int[][] edges, int numberOfVertices) { // Create a linked list for (int i = 0; i < numberOfVertices; i++) { neighbors.add(new ArrayList<Integer>()); } for (int i = 0; i < edges.length; i++) { int u = edges[i][0]; int v = edges[i][1]; neighbors.get(u).add(v); } } /** Create adjacency lists for each vertex */ private void createAdjacencyLists(List<Edge> edges, int numberOfVertices) { // Create a linked list for each vertex for (int i = 0; i < numberOfVertices; i++) { neighbors.add(new ArrayList<Integer>()); } for (Edge edge : edges) { neighbors.get(edge.u).add(edge.v); } } @Override /** Return the number of vertices in the graph */ public int getSize() { return vertices.size(); } @Override /** Return the vertices in the graph */ public List<V> getVertices() { return vertices; } @Override /** Return the object for the specified vertex */ public V getVertex(int index) { return vertices.get(index); } @Override /** Return the index for the specified vertex object */ public int getIndex(V v) { return vertices.indexOf(v); } @Override /** Return the neighbors of the specified vertex */ public List<Integer> getNeighbors(int index) { return neighbors.get(index); } @Override /** Return the degree for a specified vertex */ public int getDegree(int v) { return neighbors.get(v).size(); } @Override /** Print the edges */ public void printEdges() { for (int u = 0; u < neighbors.size(); u++) { System.out.print(getVertex(u) + " (" + u + "): "); for (int j = 0; j < neighbors.get(u).size(); j++) { System.out.print("(" + u + ", " + neighbors.get(u).get(j) + ") "); } System.out.println(); } } @Override /** Clear graph */ public void clear() { vertices.clear(); neighbors.clear(); } @Override /** Add a vertex to the graph */ public void addVertex(V vertex) { vertices.add(vertex); neighbors.add(new ArrayList<Integer>()); } @Override /** Add an edge to the graph */ public void addEdge(int u, int v) { neighbors.get(u).add(v); neighbors.get(v).add(u); } /** Edge inner class inside the AbstractGraph class */ public static class Edge { public int u; // Starting vertex of the edge public int v; // Ending vertex of the edge /** Construct an edge for (u, v) */ public Edge(int u, int v) { this.u = u; this.v = v; } } @Override /** Obtain a DFS tree starting from vertex v */ /** To be discussed in Section 27.6 */ public Tree dfs(int v) { List<Integer> searchOrder = new ArrayList<Integer>(); int[] parent = new int[vertices.size()]; for (int i = 0; i < parent.length; i++) parent[i] = -1; // Initialize parent[i] to -1 // Mark visited vertices boolean[] isVisited = new boolean[vertices.size()]; // Recursively search dfs(v, parent, searchOrder, isVisited); // Return a search tree return new Tree(v, parent, searchOrder); } /** Recursive method for DFS search */ private void dfs(int v, int[] parent, List<Integer> searchOrder, boolean[] isVisited) { // Store the visited vertex searchOrder.add(v); isVisited[v] = true; // Vertex v visited for (int i : neighbors.get(v)) { if (!isVisited[i]) { parent[i] = v; // The parent of vertex i is v dfs(i, parent, searchOrder, isVisited); // Recursive search } } } @Override /** Starting bfs search from vertex v */ /** To be discussed in Section 27.7 */ public Tree bfs(int v) { List<Integer> searchOrder = new ArrayList<Integer>(); int[] parent = new int[vertices.size()]; for (int i = 0; i < parent.length; i++) parent[i] = -1; // Initialize parent[i] to -1 java.util.LinkedList<Integer> queue = new java.util.LinkedList<Integer>(); // list // used // as // a // queue boolean[] isVisited = new boolean[vertices.size()]; queue.offer(v); // Enqueue v isVisited[v] = true; // Mark it visited while (!queue.isEmpty()) { int u = queue.poll(); // Dequeue to u searchOrder.add(u); // u searched for (int w : neighbors.get(u)) { if (!isVisited[w]) { queue.offer(w); // Enqueue w parent[w] = u; // The parent of w is u isVisited[w] = true; // Mark it visited } } } return new Tree(v, parent, searchOrder); } /** Tree inner class inside the AbstractGraph class */ /** To be discussed in Section 27.5 */ public class Tree { private int root; // The root of the tree private int[] parent; // Store the parent of each vertex private List<Integer> searchOrder; // Store the search order /** Construct a tree with root, parent, and searchOrder */ public Tree(int root, int[] parent, List<Integer> searchOrder) { this.root = root; this.parent = parent; this.searchOrder = searchOrder; } /** Return the root of the tree */ public int getRoot() { return root; } /** Return the parent of vertex v */ public int getParent(int v) { return parent[v]; } /** Return an array representing search order */ public List<Integer> getSearchOrder() { return searchOrder; } /** Return number of vertices found */ public int getNumberOfVerticesFound() { return searchOrder.size(); } /** Return the path of vertices from a vertex to the root */ public List<V> getPath(int index) { ArrayList<V> path = new ArrayList<V>(); do { path.add(vertices.get(index)); index = parent[index]; } while (index != -1); return path; } /** Print a path from the root to vertex v */ public void printPath(int index) { List<V> path = getPath(index); System.out.print("A path from " + vertices.get(root) + " to " + vertices.get(index) + ": "); for (int i = path.size() - 1; i >= 0; i--) System.out.print(path.get(i) + " "); } /** Print the whole tree */ public void printTree() { System.out.println("Root is: " + vertices.get(root)); System.out.print("Edges: "); for (int i = 0; i < parent.length; i++) { if (parent[i] != -1) { // Display an edge System.out.print("(" + vertices.get(parent[i]) + ", " + vertices.get(i) + ") "); } } System.out.println(); } } } interface Graph<V> { /** Return the number of vertices in the graph */ public int getSize(); /** Return the vertices in the graph */ public java.util.List<V> getVertices(); /** Return the object for the specified vertex index */ public V getVertex(int index); /** Return the index for the specified vertex object */ public int getIndex(V v); /** Return the neighbors of vertex with the specified index */ public java.util.List<Integer> getNeighbors(int index); /** Return the degree for a specified vertex */ public int getDegree(int v); /** Print the edges */ public void printEdges(); /** Clear graph */ public void clear(); /** Add a vertex to the graph */ public void addVertex(V vertex); /** Add an edge to the graph */ public void addEdge(int u, int v); /** Obtain a depth-first search tree */ public AbstractGraph<V>.Tree dfs(int v); /** Obtain a breadth-first search tree */ public AbstractGraph<V>.Tree bfs(int v); } }
No comments :
Post a Comment