22.6 (Execution time for GCD) Write a program that obtains the execution time for finding the GCD of every two consecutive Fibonacci numbers from the index
40 to index 45 using the algorithms in Listings 22.3 and 22.4.
40 to index 45 using the algorithms in Listings 22.3 and 22.4.
public class Exercise22_06 { public static void main(String[] args) { // Find the first 47 Fibonacci numbers final int INDEX = 47; int[] numbers = new int[INDEX]; numbers[0] = 0; numbers[1] = 1; for (int i = 2; i < INDEX; i++) { numbers[i] = numbers[i - 1] + numbers[i - 2]; } System.out.println("\t\t\t40\t41\t42\t43\t44\t45"); System.out.println("-----------------------------------------------"); System.out.print("Listing 23.2 GCD1"); long[] executionTime = new long[6]; for (int i = 40; i <= 45; i++) { long startTime = System.currentTimeMillis(); gcd1(numbers[i], numbers[i + 1]); executionTime[i - 40] = System.currentTimeMillis() - startTime; } for (int i = 0; i <= 5; i++) { System.out.print("\t" + executionTime[i]); } System.out.print("\nListing 23.3 GCD2"); for (int i = 40; i <= 45; i++) { long startTime = System.currentTimeMillis(); gcd2(numbers[i], numbers[i + 1]); executionTime[i - 40] = System.currentTimeMillis() - startTime; } for (int i = 0; i <= 5; i++) { System.out.print("\t" + executionTime[i]); } } /** From Listing 21.2: Find gcd for intergers m and n */ public static int gcd1(int m, int n) { int gcd = 1; if (m == n) return m; for (int k = 1; k <= m / 2 && k <= n / 2; k++) { if (m % k == 0 && n % k == 0) gcd = k; } return gcd; } /** From Listing 21.3: Find gcd for intergers m and n */ public static int gcd2(int m, int n) { if (m % n == 0) return n; else return gcd2(n, m % n); } }
No comments :
Post a Comment