29.3 (Implement Dijkstra’s algorithm using an adjacency matrix) The text imple-
ments Dijkstra’s algorithm using lists for adjacent edges. Implement the algo-
rithm using an adjacency matrix for weighted graphs.
ments Dijkstra’s algorithm using lists for adjacent edges. Implement the algo-
rithm using an adjacency matrix for weighted graphs.
import java.util.*; public class Exercise03 { public static void main(String[] args) { String[] vertices = {"Seattle", "San Francisco", "Los Angeles", "Denver", "Kansas City", "Chicago", "Boston", "New York", "Atlanta", "Miami", "Dallas", "Houston"}; int[][] edges = { {0, 1, 807}, {0, 3, 1331}, {0, 5, 2097}, {1, 0, 807}, {1, 2, 381}, {1, 3, 1267}, {2, 1, 381}, {2, 3, 1015}, {2, 4, 1663}, {2, 10, 1435}, {3, 0, 1331}, {3, 1, 1267}, {3, 2, 1015}, {3, 4, 599}, {3, 5, 1003}, {4, 2, 1663}, {4, 3, 599}, {4, 5, 533}, {4, 7, 1260}, {4, 8, 864}, {4, 10, 496}, {5, 0, 2097}, {5, 3, 1003}, {5, 4, 533}, {5, 6, 983}, {5, 7, 787}, {6, 5, 983}, {6, 7, 214}, {7, 4, 1260}, {7, 5, 787}, {7, 6, 214}, {7, 8, 888}, {8, 4, 864}, {8, 7, 888}, {8, 9, 661}, {8, 10, 781}, {8, 11, 810}, {9, 8, 661}, {9, 11, 1187}, {10, 2, 1435}, {10, 4, 496}, {10, 8, 781}, {10, 11, 239}, {11, 8, 810}, {11, 9, 1187}, {11, 10, 239} }; WeightedGraph<String> graph1 = new WeightedGraph<String>(edges, vertices); WeightedGraph<String>.ShortestPathTree tree11 = graph1.getShortestPath(graph1.getIndex("Chicago")); System.out.print("\n\n"); tree11.printAllPaths(); System.out.print("Shortest path from Houston to Chicago: "); java.util.List<String> path = tree11.getPath(11); for (String s : path) { System.out.print(s + " "); } WeightedGraph<String>.ShortestPathTree tree12 = graph1.getShortestPathByMatrix(graph1.getIndex("Chicago")); System.out.print("\n\n"); tree12.printAllPaths(); System.out.print("Shortest path from Houston to Chicago: "); path = tree12.getPath(11); for (String s : path) { System.out.print(s + " "); } edges = new int[][] { { 0, 1, 2 }, { 0, 3, 8 }, { 1, 0, 2 }, { 1, 2, 7 }, { 1, 3, 3 }, { 2, 1, 7 }, { 2, 3, 4 }, { 2, 4, 5 }, { 3, 0, 8 }, { 3, 1, 3 }, { 3, 2, 4 }, { 3, 4, 6 }, { 4, 2, 5 }, { 4, 3, 6 } }; WeightedGraph<Integer> graph2 = new WeightedGraph<Integer>(edges, 5); WeightedGraph<Integer>.ShortestPathTree tree21 = graph2.getShortestPath(3); System.out.print("\n\n"); tree21.printAllPaths(); WeightedGraph<Integer>.ShortestPathTree tree22 = graph2.getShortestPathByMatrix(3); System.out.print("\n\n"); tree22.printAllPaths(); } static class WeightedGraph<V> extends AbstractGraph<V> { // Priority adjacency lists private List<PriorityQueue<WeightedEdge>> queues = new ArrayList<PriorityQueue<WeightedEdge>>(); /** Construct a WeightedGraph from edges and vertices in arrays */ public WeightedGraph() { } /** Construct a WeightedGraph from edges and vertices in arrays */ public WeightedGraph(int[][] edges, V[] vertices) { super(edges, vertices); createQueues(edges, vertices.length); } /** Construct a WeightedGraph from edges and vertices in List */ public WeightedGraph(int[][] edges, int numberOfVertices) { super(edges, numberOfVertices); createQueues(edges, numberOfVertices); } /** Construct a WeightedGraph for vertices 0, 1, 2 and edge list */ @SuppressWarnings({ "rawtypes", "unchecked" }) public WeightedGraph(List<WeightedEdge> edges, List<V> vertices) { super((List) edges, vertices); createQueues(edges, vertices.size()); } /** Construct a WeightedGraph from vertices 0, 1, and edge array */ @SuppressWarnings({ "rawtypes", "unchecked" }) public WeightedGraph(List<WeightedEdge> edges, int numberOfVertices) { super((List) edges, numberOfVertices); createQueues(edges, numberOfVertices); } /** Create priority adjacency lists from edge arrays */ private void createQueues(int[][] edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) { queues.add(new PriorityQueue<WeightedEdge>()); // Create a queue } for (int i = 0; i < edges.length; i++) { int u = edges[i][0]; int v = edges[i][1]; int weight = edges[i][2]; // Insert an edge into the queue queues.get(u).offer(new WeightedEdge(u, v, weight)); } } /** Create priority adjacency lists from edge lists */ private void createQueues(List<WeightedEdge> edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) { queues.add(new PriorityQueue<WeightedEdge>()); // Create a queue } for (WeightedEdge edge : edges) { queues.get(edge.u).offer(edge); // Insert an edge into the queue } } /** Display edges with weights */ public void printWeightedEdges() { for (int i = 0; i < queues.size(); i++) { System.out.print(getVertex(i) + " (" + i + "): "); for (WeightedEdge edge : queues.get(i)) { System.out.print("(" + edge.u + ", " + edge.v + ", " + edge.weight + ") "); } System.out.println(); } } /** Get the edges from the weighted graph */ public List<PriorityQueue<WeightedEdge>> getWeightedEdges() { return queues; } /** Clears the weighted graph */ public void clear() { vertices.clear(); neighbors.clear(); queues.clear(); } /** Add vertices to the weighted graph */ public void addVertex(V vertex) { super.addVertex(vertex); queues.add(new PriorityQueue<WeightedEdge>()); } /** Add edges to the weighted graph */ public void addEdge(int u, int v, double weight) { super.addEdge(u, v); queues.get(u).add(new WeightedEdge(u, v, weight)); queues.get(v).add(new WeightedEdge(v, u, weight)); } /** Get a minimum spanning tree rooted at vertex 0 */ public MST getMinimumSpanningTree() { return getMinimumSpanningTree(0); } /** Get a minimum spanning tree rooted at a specified vertex */ public MST getMinimumSpanningTree(int startingVertex) { List<Integer> T = new ArrayList<Integer>(); // T initially contains the startingVertex; T.add(startingVertex); int numberOfVertices = vertices.size(); // Number of vertices int[] parent = new int[numberOfVertices]; // Parent of a vertex // Initially set the parent of all vertices to -1 for (int i = 0; i < parent.length; i++) parent[i] = -1; double totalWeight = 0; // Total weight of the tree thus far // Clone the priority queue, so to keep the original queue intact List<PriorityQueue<WeightedEdge>> queues = deepClone(this.queues); // All vertices are found? while (T.size() < numberOfVertices) { // Search for the vertex with the smallest edge adjacent to // a vertex in T int v = -1; double smallestWeight = Double.MAX_VALUE; for (int u : T) { while (!queues.get(u).isEmpty() && T.contains(queues.get(u).peek().v)) { // Remove the edge from queues[u] if the adjacent // vertex of u is already in T queues.get(u).remove(); } if (queues.get(u).isEmpty()) { continue; // Consider the next vertex in T } // Current smallest weight on an edge adjacent to u WeightedEdge edge = queues.get(u).peek(); if (edge.weight < smallestWeight) { v = edge.v; smallestWeight = edge.weight; // If v is added to the tree, u will be its parent parent[v] = u; } } // End of for if (v != -1) T.add(v); // Add a new vertex to the tree else break; // The tree is not connected, a partial MST is found totalWeight += smallestWeight; } // End of while return new MST(startingVertex, parent, T, totalWeight); } /** Clone an array of queues */ private List<PriorityQueue<WeightedEdge>> deepClone( List<PriorityQueue<WeightedEdge>> queues) { List<PriorityQueue<WeightedEdge>> copiedQueues = new ArrayList<PriorityQueue<WeightedEdge>>(); for (int i = 0; i < queues.size(); i++) { copiedQueues.add(new PriorityQueue<WeightedEdge>()); for (WeightedEdge e : queues.get(i)) { copiedQueues.get(i).add(e); } } return copiedQueues; } /** MST is an inner class in WeightedGraph */ public class MST extends Tree { private double totalWeight; // Total weight of all edges in the tree public MST(int root, int[] parent, List<Integer> searchOrder, double totalWeight) { super(root, parent, searchOrder); this.totalWeight = totalWeight; } public double getTotalWeight() { return totalWeight; } } public ShortestPathTree getShortestPathByMatrix(int sourceVertex) { Double[][] adjacencyMatrix = new Double[getSize()][getSize()]; for (int i = 0; i < queues.size(); i++) { PriorityQueue<WeightedEdge> tmpQueue = queues.get(i); for (WeightedEdge weightedEdge : tmpQueue) { adjacencyMatrix[weightedEdge.u][weightedEdge.v] = weightedEdge.weight; } } // T stores the vertices whose path found so far List<Integer> T = new ArrayList<Integer>(); // T initially contains the sourceVertex; T.add(sourceVertex); // vertices is defined in AbstractGraph int numberOfVertices = vertices.size(); // parent[v] stores the previous vertex of v in the path int[] parent = new int[numberOfVertices]; parent[sourceVertex] = -1; // The parent of source is set to -1 // cost[v] stores the cost of the path from v to the source double[] cost = new double[numberOfVertices]; for (int i = 0; i < cost.length; i++) { cost[i] = Double.MAX_VALUE; // Initial cost set to infinity } cost[sourceVertex] = 0; // Cost of source is 0 // Expand T while (T.size() < numberOfVertices) { int v = -1; // Vertex to be determined double smallestCost = Double.MAX_VALUE; // Set to infinity for (int u : T) { while (!isEmptyM(adjacencyMatrix, u) && T.contains(peekM(adjacencyMatrix, u).v)) { removeM(adjacencyMatrix, u); } if (isEmptyM(adjacencyMatrix, u)) { // All vertices adjacent to u are in T continue; } WeightedEdge e = peekM(adjacencyMatrix, u); if (cost[u] + e.weight < smallestCost) { v = e.v; smallestCost = cost[u] + e.weight; // If v is added to the tree, u will be its parent parent[v] = u; } } // End of for T.add(v); // Add a new vertex to T cost[v] = smallestCost; } // End of while // Create a ShortestPathTree return new ShortestPathTree(sourceVertex, parent, T, cost); } private boolean isEmptyM(Double[][] adjacencyMatrix, int u) { for (int i = 0; i < adjacencyMatrix.length; i++) { if(adjacencyMatrix[u][i] != null) { return false; } } return true; } private void removeM(Double[][] adjacencyMatrix, int u) { for (int i = adjacencyMatrix.length - 1; i >= 0; i--) { if(adjacencyMatrix[u][i] != null) { adjacencyMatrix[u][i] = null; return; } } } private WeightedEdge peekM(Double[][] adjacencyMatrix, int u) { for (int i = adjacencyMatrix.length - 1; i >= 0; i--) { if(adjacencyMatrix[u][i] != null) { return new WeightedEdge(u, i, adjacencyMatrix[u][i]); } } return null; } /** Find single source shortest paths */ public ShortestPathTree getShortestPath(int sourceVertex) { // T stores the vertices whose path found so far List<Integer> T = new ArrayList<Integer>(); // T initially contains the sourceVertex; T.add(sourceVertex); // vertices is defined in AbstractGraph int numberOfVertices = vertices.size(); // parent[v] stores the previous vertex of v in the path int[] parent = new int[numberOfVertices]; parent[sourceVertex] = -1; // The parent of source is set to -1 // cost[v] stores the cost of the path from v to the source double[] cost = new double[numberOfVertices]; for (int i = 0; i < cost.length; i++) { cost[i] = Double.MAX_VALUE; // Initial cost set to infinity } cost[sourceVertex] = 0; // Cost of source is 0 // Get a copy of queues List<PriorityQueue<WeightedEdge>> queues = deepClone(this.queues); // Expand T while (T.size() < numberOfVertices) { int v = -1; // Vertex to be determined double smallestCost = Double.MAX_VALUE; // Set to infinity for (int u : T) { while (!queues.get(u).isEmpty() && T.contains(queues.get(u).peek().v)) { queues.get(u).remove(); // Remove the vertex in queue // for u } if (queues.get(u).isEmpty()) { // All vertices adjacent to u are in T continue; } WeightedEdge e = queues.get(u).peek(); if (cost[u] + e.weight < smallestCost) { v = e.v; smallestCost = cost[u] + e.weight; // If v is added to the tree, u will be its parent parent[v] = u; } } // End of for T.add(v); // Add a new vertex to T cost[v] = smallestCost; } // End of while // Create a ShortestPathTree return new ShortestPathTree(sourceVertex, parent, T, cost); } /** ShortestPathTree is an inner class in WeightedGraph */ public class ShortestPathTree extends Tree { private double[] cost; // cost[v] is the cost from v to source /** Construct a path */ public ShortestPathTree(int source, int[] parent, List<Integer> searchOrder, double[] cost) { super(source, parent, searchOrder); this.cost = cost; } /** Return the cost for a path from the root to vertex v */ public double getCost(int v) { return cost[v]; } /** Print paths from all vertices to the source */ public void printAllPaths() { System.out.println("All shortest paths from " + vertices.get(getRoot()) + " are:"); for (int i = 0; i < cost.length; i++) { printPath(i); // Print a path from i to the source System.out.println("(cost: " + cost[i] + ")"); // Path cost } } } } static class WeightedEdge extends AbstractGraph.Edge implements Comparable<WeightedEdge> { public double weight; // The weight on edge (u, v) /** Create a weighted edge on (u, v) */ public WeightedEdge(int u, int v, double weight) { super(u, v); this.weight = weight; } /** Compare two edges on weights */ public int compareTo(WeightedEdge edge) { if (weight > edge.weight) { return 1; } else if (weight == edge.weight) { return 0; } else { return -1; } } @Override public boolean equals(Object obj) { if (obj instanceof WeightedEdge) { WeightedEdge that = (WeightedEdge)obj; return (u == that.u) && (v == that.v) && (weight == that.weight); } else { return false; } } @Override public String toString() { return "(" + u + ", " + v + ", " + weight + ")"; } } static abstract class AbstractGraph<V> implements Graph<V> { protected List<V> vertices = new ArrayList<V>(); // Store vertices protected List<List<Integer>> neighbors = new ArrayList<List<Integer>>(); // Adjacency // lists /** Construct an empty graph */ protected AbstractGraph() { } /** Construct a graph from edges and vertices stored in arrays */ protected AbstractGraph(int[][] edges, V[] vertices) { for (int i = 0; i < vertices.length; i++) this.vertices.add(vertices[i]); createAdjacencyLists(edges, vertices.length); } /** Construct a graph from edges and vertices stored in List */ protected AbstractGraph(List<Edge> edges, List<V> vertices) { for (int i = 0; i < vertices.size(); i++) this.vertices.add(vertices.get(i)); createAdjacencyLists(edges, vertices.size()); } /** Construct a graph for integer vertices 0, 1, 2 and edge list */ @SuppressWarnings("unchecked") protected AbstractGraph(List<Edge> edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...} createAdjacencyLists(edges, numberOfVertices); } /** Construct a graph from integer vertices 0, 1, and edge array */ @SuppressWarnings("unchecked") protected AbstractGraph(int[][] edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...} createAdjacencyLists(edges, numberOfVertices); } /** Create adjacency lists for each vertex */ private void createAdjacencyLists(int[][] edges, int numberOfVertices) { // Create a linked list for (int i = 0; i < numberOfVertices; i++) { neighbors.add(new ArrayList<Integer>()); } for (int i = 0; i < edges.length; i++) { int u = edges[i][0]; int v = edges[i][1]; neighbors.get(u).add(v); } } /** Create adjacency lists for each vertex */ private void createAdjacencyLists(List<Edge> edges, int numberOfVertices) { // Create a linked list for each vertex for (int i = 0; i < numberOfVertices; i++) { neighbors.add(new ArrayList<Integer>()); } for (Edge edge : edges) { neighbors.get(edge.u).add(edge.v); } } public boolean isCyclic() { for (int i = 0; i < vertices.size(); i++) { if(isCyclic(i)) { return true; } } return false; } private boolean isCyclic(int v) { List<Integer> searchOrder = new ArrayList<Integer>(); int[] parent = new int[vertices.size()]; for (int i = 0; i < parent.length; i++) { parent[i] = -1; } boolean[] isVisited = new boolean[vertices.size()]; return isCyclic(v, v, parent, searchOrder, isVisited); } private boolean isCyclic(int first, int v, int[] parent, List<Integer> searchOrder, boolean[] isVisited) { searchOrder.add(v); isVisited[v] = true; for (int i : neighbors.get(v)) { if (!isVisited[i]) { parent[i] = v; int[] newParent = java.util.Arrays.copyOf(parent, parent.length); boolean[] newIsVisited = java.util.Arrays.copyOf(isVisited, parent.length); @SuppressWarnings("unchecked") List<Integer> newSearchOrder = (List<Integer>) ((ArrayList<Integer>)searchOrder).clone(); if(isCyclic(first, i, newParent, newSearchOrder, newIsVisited)) { return true; } } else if(first == i) { if(searchOrder.size() > 2) { return true; } } } return false; } @Override /** Return the number of vertices in the graph */ public int getSize() { return vertices.size(); } @Override /** Return the vertices in the graph */ public List<V> getVertices() { return vertices; } @Override /** Return the object for the specified vertex */ public V getVertex(int index) { return vertices.get(index); } @Override /** Return the index for the specified vertex object */ public int getIndex(V v) { return vertices.indexOf(v); } @Override /** Return the neighbors of the specified vertex */ public List<Integer> getNeighbors(int index) { return neighbors.get(index); } @Override /** Return the degree for a specified vertex */ public int getDegree(int v) { return neighbors.get(v).size(); } @Override /** Print the edges */ public void printEdges() { for (int u = 0; u < neighbors.size(); u++) { System.out.print(getVertex(u) + " (" + u + "): "); for (int j = 0; j < neighbors.get(u).size(); j++) { System.out.print("(" + u + ", " + neighbors.get(u).get(j) + ") "); } System.out.println(); } } @Override /** Clear graph */ public void clear() { vertices.clear(); neighbors.clear(); } @Override /** Add a vertex to the graph */ public void addVertex(V vertex) { vertices.add(vertex); neighbors.add(new ArrayList<Integer>()); } @Override /** Add an edge to the graph */ public void addEdge(int u, int v) { neighbors.get(u).add(v); neighbors.get(v).add(u); } /** Edge inner class inside the AbstractGraph class */ public static class Edge { public int u; // Starting vertex of the edge public int v; // Ending vertex of the edge /** Construct an edge for (u, v) */ public Edge(int u, int v) { this.u = u; this.v = v; } } @Override /** Obtain a DFS tree starting from vertex v */ /** To be discussed in Section 27.6 */ public Tree dfs(int v) { List<Integer> searchOrder = new ArrayList<Integer>(); int[] parent = new int[vertices.size()]; for (int i = 0; i < parent.length; i++) parent[i] = -1; // Initialize parent[i] to -1 // Mark visited vertices boolean[] isVisited = new boolean[vertices.size()]; // Recursively search dfs(v, parent, searchOrder, isVisited); // Return a search tree return new Tree(v, parent, searchOrder); } /** Recursive method for DFS search */ private void dfs(int v, int[] parent, List<Integer> searchOrder, boolean[] isVisited) { // Store the visited vertex searchOrder.add(v); isVisited[v] = true; // Vertex v visited for (int i : neighbors.get(v)) { if (!isVisited[i]) { parent[i] = v; // The parent of vertex i is v dfs(i, parent, searchOrder, isVisited); // Recursive search } } } @Override /** Starting bfs search from vertex v */ /** To be discussed in Section 27.7 */ public Tree bfs(int v) { List<Integer> searchOrder = new ArrayList<Integer>(); int[] parent = new int[vertices.size()]; for (int i = 0; i < parent.length; i++) parent[i] = -1; // Initialize parent[i] to -1 java.util.LinkedList<Integer> queue = new java.util.LinkedList<Integer>(); // list // used // as // a // queue boolean[] isVisited = new boolean[vertices.size()]; queue.offer(v); // Enqueue v isVisited[v] = true; // Mark it visited while (!queue.isEmpty()) { int u = queue.poll(); // Dequeue to u searchOrder.add(u); // u searched for (int w : neighbors.get(u)) { if (!isVisited[w]) { queue.offer(w); // Enqueue w parent[w] = u; // The parent of w is u isVisited[w] = true; // Mark it visited } } } return new Tree(v, parent, searchOrder); } /** Tree inner class inside the AbstractGraph class */ /** To be discussed in Section 27.5 */ public class Tree { private int root; // The root of the tree private int[] parent; // Store the parent of each vertex private List<Integer> searchOrder; // Store the search order /** Construct a tree with root, parent, and searchOrder */ public Tree(int root, int[] parent, List<Integer> searchOrder) { this.root = root; this.parent = parent; this.searchOrder = searchOrder; } /** Return the root of the tree */ public int getRoot() { return root; } /** Return the parent of vertex v */ public int getParent(int v) { return parent[v]; } /** Return an array representing search order */ public List<Integer> getSearchOrder() { return searchOrder; } /** Return number of vertices found */ public int getNumberOfVerticesFound() { return searchOrder.size(); } /** Return the path of vertices from a vertex to the root */ public List<V> getPath(int index) { ArrayList<V> path = new ArrayList<V>(); do { path.add(vertices.get(index)); index = parent[index]; } while (index != -1); return path; } /** Print a path from the root to vertex v */ public void printPath(int index) { List<V> path = getPath(index); System.out.print("A path from " + vertices.get(root) + " to " + vertices.get(index) + ": "); for (int i = path.size() - 1; i >= 0; i--) System.out.print(path.get(i) + " "); } /** Print the whole tree */ public void printTree() { System.out.println("Root is: " + vertices.get(root)); System.out.print("Edges: "); for (int i = 0; i < parent.length; i++) { if (parent[i] != -1) { // Display an edge System.out.print("(" + vertices.get(parent[i]) + ", " + vertices.get(i) + ") "); } } System.out.println(); } } } interface Graph<V> { /** Return the number of vertices in the graph */ public int getSize(); /** Return the vertices in the graph */ public java.util.List<V> getVertices(); /** Return the object for the specified vertex index */ public V getVertex(int index); /** Return the index for the specified vertex object */ public int getIndex(V v); /** Return the neighbors of vertex with the specified index */ public java.util.List<Integer> getNeighbors(int index); /** Return the degree for a specified vertex */ public int getDegree(int v); /** Print the edges */ public void printEdges(); /** Clear graph */ public void clear(); /** Add a vertex to the graph */ public void addVertex(V vertex); /** Add an edge to the graph */ public void addEdge(int u, int v); /** Obtain a depth-first search tree */ public AbstractGraph<V>.Tree dfs(int v); /** Obtain a breadth-first search tree */ public AbstractGraph<V>.Tree bfs(int v); } }
No comments:
Post a Comment