28.18 (Knight’s Tour cycle) Rewrite KnightTourApp.java in the case study in Supplement VI.E to find a knight’s tour that visits each square in a chessboard and returns to the starting square. Reduce the Knight’s Tour cycle problem to the problem of finding a Hamiltonian cycle.
import java.util.ArrayList; import java.util.List; import javax.swing.*; import java.awt.*; import java.awt.event.*; public class Exercise18 extends JApplet { private static final long serialVersionUID = 1L; private KnightTourModel model = new KnightTourModel(); private PaintKnightTour paintKnightTour = new PaintKnightTour(); private JTextField jtfRow = new JTextField(2); private JTextField jtfColumn = new JTextField(2); private JButton jbtSearch = new JButton("Search"); public Exercise18() { JPanel panel = new JPanel(); panel.add(new JLabel("Specify a starting position, row: ")); panel.add(jtfRow); panel.add(new JLabel("column: ")); panel.add(jtfColumn); panel.add(jbtSearch); add(paintKnightTour, BorderLayout.CENTER); add(panel, BorderLayout.SOUTH); jbtSearch.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent e) { int position = Integer.parseInt(jtfRow.getText()) * 8 + Integer.parseInt(jtfColumn.getText()); paintKnightTour.displayPath(model.getHamiltonianPath(position)); } }); } /** A panel to paint the chessboard and the knight tour */ private static class PaintKnightTour extends JPanel { private static final long serialVersionUID = 1L; private List<Integer> path; // A Knight tour path public PaintKnightTour() { setBorder(BorderFactory.createLineBorder(Color.black, 1)); } public void displayPath(List<Integer> path) { this.path = path; repaint(); } @Override protected void paintComponent(Graphics g) { super.paintComponent(g); // Display horizontal lines for (int i = 0; i < 8; i++) g.drawLine(0, i * getHeight() / 8, getWidth(), i * getHeight() / 8); // Display vertical lines for (int i = 0; i < 8; i++) g.drawLine(i * getWidth() / 8, 0, (int) i * getWidth() / 8, getHeight()); if (path == null) return; // No path to be displayed yet for (int i = 0; i < path.size() - 1; i++) { int u = path.get(i); int v = path.get(i + 1); // Knight moves from u and v. Draw a line to connect u and v g.drawLine((u % 8) * getWidth() / 8 + getWidth() / 16, (u / 8) * getHeight() / 8 + getHeight() / 16, (v % 8) * getWidth() / 8 + getWidth() / 16, (v / 8) * getHeight() / 8 + getHeight() / 16); } } } public static void main(String[] args) { // Create a frame JFrame frame = new JFrame("Knight's Tour"); // Create an instance of the applet Exercise18 applet = new Exercise18(); // Add the applet instance to the frame frame.add(applet, BorderLayout.CENTER); // Display the frame frame.setSize(400, 400); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setLocationRelativeTo(null); // Center the frame frame.setVisible(true); } static class KnightTourModel { private UnweightedGraph<Integer> graph; // Define a graph public KnightTourModel() { // (u, v) is an edge if a knight can move from u and v ArrayList<AbstractGraph.Edge> edges = getEdges(); // Create a graph with 64 vertices labeled 0 to 63 graph = new UnweightedGraph<Integer>(edges, 64); } /** Get a Hamiltonian path starting from vertex v */ public List<Integer> getHamiltonianPath(int v) { return graph.getHamiltonianPath(v); } /** Create edges for the graph */ public static ArrayList<AbstractGraph.Edge> getEdges() { ArrayList<AbstractGraph.Edge> edges = new ArrayList<AbstractGraph.Edge>(); // Store // edges for (int i = 0; i < 8; i++) for (int j = 0; j < 8; j++) { int u = i * 8 + j; // The vertex label // Check eight possible edges from u if (i - 1 >= 0 && j - 2 >= 0) { int v1 = (i - 1) * 8 + (j - 2); edges.add(new AbstractGraph.Edge(u, v1)); } if (i - 2 >= 0 && j - 1 >= 0) { int v2 = (i - 2) * 8 + (j - 1); edges.add(new AbstractGraph.Edge(u, v2)); } if (i - 2 >= 0 && j + 1 <= 7) { int v3 = (i - 2) * 8 + (j + 1); edges.add(new AbstractGraph.Edge(u, v3)); } if (i - 1 >= 0 && j + 2 <= 7) { int v4 = (i - 1) * 8 + (j + 2); edges.add(new AbstractGraph.Edge(u, v4)); } if (i + 1 <= 7 && j + 2 <= 7) { int v5 = (i + 1) * 8 + (j + 2); edges.add(new AbstractGraph.Edge(u, v5)); } if (i + 2 <= 7 && j + 1 <= 7) { int v6 = (i + 2) * 8 + (j + 1); edges.add(new AbstractGraph.Edge(u, v6)); } if (i + 2 <= 7 && j - 1 >= 0) { int v7 = (i + 2) * 8 + (j - 1); edges.add(new AbstractGraph.Edge(u, v7)); } if (i + 1 <= 7 && j - 2 >= 0) { int v8 = (i + 1) * 8 + (j - 2); edges.add(new AbstractGraph.Edge(u, v8)); } } return edges; } } static class UnweightedGraph<V> extends AbstractGraph<V> { /** Construct an empty graph */ public UnweightedGraph() { } /** Construct a graph from edges and vertices stored in arrays */ public UnweightedGraph(int[][] edges, V[] vertices) { super(edges, vertices); } /** Construct a graph from edges and vertices stored in List */ public UnweightedGraph(List<Edge> edges, List<V> vertices) { super(edges, vertices); } /** Construct a graph for integer vertices 0, 1, 2 and edge list */ public UnweightedGraph(List<Edge> edges, int numberOfVertices) { super(edges, numberOfVertices); } /** Construct a graph from integer vertices 0, 1, and edge array */ public UnweightedGraph(int[][] edges, int numberOfVertices) { super(edges, numberOfVertices); } } static abstract class AbstractGraph<V> implements Graph<V> { protected List<V> vertices = new ArrayList<V>(); // Store vertices protected List<List<Integer>> neighbors = new ArrayList<List<Integer>>(); // Adjacency // lists /** Construct an empty graph */ protected AbstractGraph() { } /** Construct a graph from edges and vertices stored in arrays */ protected AbstractGraph(int[][] edges, V[] vertices) { for (int i = 0; i < vertices.length; i++) this.vertices.add(vertices[i]); createAdjacencyLists(edges, vertices.length); } /** Construct a graph from edges and vertices stored in List */ protected AbstractGraph(List<Edge> edges, List<V> vertices) { for (int i = 0; i < vertices.size(); i++) this.vertices.add(vertices.get(i)); createAdjacencyLists(edges, vertices.size()); } /** Construct a graph for integer vertices 0, 1, 2 and edge list */ @SuppressWarnings("unchecked") protected AbstractGraph(List<Edge> edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...} createAdjacencyLists(edges, numberOfVertices); } /** Construct a graph from integer vertices 0, 1, and edge array */ @SuppressWarnings("unchecked") protected AbstractGraph(int[][] edges, int numberOfVertices) { for (int i = 0; i < numberOfVertices; i++) vertices.add((V) (new Integer(i))); // vertices is {0, 1, ...} createAdjacencyLists(edges, numberOfVertices); } public List<Integer> getHamiltonianPath(int u) { List<Integer> searchOrder = new ArrayList<Integer>(); int[] parent = new int[vertices.size()]; for (int i = 0; i < parent.length; i++) { parent[i] = -1; } boolean[] isVisited = new boolean[vertices.size()]; return getAllCycles(u, u, searchOrder, isVisited); } private List<Integer> getAllCycles(int first, int v, List<Integer> searchOrder, boolean[] isVisited) { searchOrder.add(v); isVisited[v] = true; for (int i : neighbors.get(v)) { if (!isVisited[i]) { boolean[] newIsVisited = java.util.Arrays.copyOf(isVisited, isVisited.length); @SuppressWarnings("unchecked") List<Integer> newSearchOrder = (List<Integer>) ((ArrayList<Integer>)searchOrder).clone(); List<Integer> result = getAllCycles(first, i, newSearchOrder, newIsVisited); if(result != null) { return result; } } else if(first == i) { if(searchOrder.size() == vertices.size()) { return searchOrder; } } } return null; } /** Create adjacency lists for each vertex */ private void createAdjacencyLists(int[][] edges, int numberOfVertices) { // Create a linked list for (int i = 0; i < numberOfVertices; i++) { neighbors.add(new ArrayList<Integer>()); } for (int i = 0; i < edges.length; i++) { int u = edges[i][0]; int v = edges[i][1]; neighbors.get(u).add(v); } } /** Create adjacency lists for each vertex */ private void createAdjacencyLists(List<Edge> edges, int numberOfVertices) { // Create a linked list for each vertex for (int i = 0; i < numberOfVertices; i++) { neighbors.add(new ArrayList<Integer>()); } for (Edge edge : edges) { neighbors.get(edge.u).add(edge.v); } } @Override /** Return the number of vertices in the graph */ public int getSize() { return vertices.size(); } @Override /** Return the vertices in the graph */ public List<V> getVertices() { return vertices; } @Override /** Return the object for the specified vertex */ public V getVertex(int index) { return vertices.get(index); } @Override /** Return the index for the specified vertex object */ public int getIndex(V v) { return vertices.indexOf(v); } @Override /** Return the neighbors of the specified vertex */ public List<Integer> getNeighbors(int index) { return neighbors.get(index); } @Override /** Return the degree for a specified vertex */ public int getDegree(int v) { return neighbors.get(v).size(); } @Override /** Print the edges */ public void printEdges() { for (int u = 0; u < neighbors.size(); u++) { System.out.print(getVertex(u) + " (" + u + "): "); for (int j = 0; j < neighbors.get(u).size(); j++) { System.out.print("(" + u + ", " + neighbors.get(u).get(j) + ") "); } System.out.println(); } } @Override /** Clear graph */ public void clear() { vertices.clear(); neighbors.clear(); } @Override /** Add a vertex to the graph */ public void addVertex(V vertex) { vertices.add(vertex); neighbors.add(new ArrayList<Integer>()); } @Override /** Add an edge to the graph */ public void addEdge(int u, int v) { neighbors.get(u).add(v); neighbors.get(v).add(u); } /** Edge inner class inside the AbstractGraph class */ public static class Edge { public int u; // Starting vertex of the edge public int v; // Ending vertex of the edge /** Construct an edge for (u, v) */ public Edge(int u, int v) { this.u = u; this.v = v; } } @Override /** Obtain a DFS tree starting from vertex v */ /** To be discussed in Section 27.6 */ public Tree dfs(int v) { List<Integer> searchOrder = new ArrayList<Integer>(); int[] parent = new int[vertices.size()]; for (int i = 0; i < parent.length; i++) parent[i] = -1; // Initialize parent[i] to -1 // Mark visited vertices boolean[] isVisited = new boolean[vertices.size()]; // Recursively search dfs(v, parent, searchOrder, isVisited); // Return a search tree return new Tree(v, parent, searchOrder); } /** Recursive method for DFS search */ private void dfs(int v, int[] parent, List<Integer> searchOrder, boolean[] isVisited) { // Store the visited vertex searchOrder.add(v); isVisited[v] = true; // Vertex v visited for (int i : neighbors.get(v)) { if (!isVisited[i]) { parent[i] = v; // The parent of vertex i is v dfs(i, parent, searchOrder, isVisited); // Recursive search } } } @Override /** Starting bfs search from vertex v */ /** To be discussed in Section 27.7 */ public Tree bfs(int v) { List<Integer> searchOrder = new ArrayList<Integer>(); int[] parent = new int[vertices.size()]; for (int i = 0; i < parent.length; i++) parent[i] = -1; // Initialize parent[i] to -1 java.util.LinkedList<Integer> queue = new java.util.LinkedList<Integer>(); // list // used // as // a // queue boolean[] isVisited = new boolean[vertices.size()]; queue.offer(v); // Enqueue v isVisited[v] = true; // Mark it visited while (!queue.isEmpty()) { int u = queue.poll(); // Dequeue to u searchOrder.add(u); // u searched for (int w : neighbors.get(u)) { if (!isVisited[w]) { queue.offer(w); // Enqueue w parent[w] = u; // The parent of w is u isVisited[w] = true; // Mark it visited } } } return new Tree(v, parent, searchOrder); } /** Tree inner class inside the AbstractGraph class */ /** To be discussed in Section 27.5 */ public class Tree { private int root; // The root of the tree private int[] parent; // Store the parent of each vertex private List<Integer> searchOrder; // Store the search order /** Construct a tree with root, parent, and searchOrder */ public Tree(int root, int[] parent, List<Integer> searchOrder) { this.root = root; this.parent = parent; this.searchOrder = searchOrder; } /** Return the root of the tree */ public int getRoot() { return root; } /** Return the parent of vertex v */ public int getParent(int v) { return parent[v]; } /** Return an array representing search order */ public List<Integer> getSearchOrder() { return searchOrder; } /** Return number of vertices found */ public int getNumberOfVerticesFound() { return searchOrder.size(); } /** Return the path of vertices from a vertex to the root */ public List<V> getPath(int index) { ArrayList<V> path = new ArrayList<V>(); do { path.add(vertices.get(index)); index = parent[index]; } while (index != -1); return path; } /** Print a path from the root to vertex v */ public void printPath(int index) { List<V> path = getPath(index); System.out.print("A path from " + vertices.get(root) + " to " + vertices.get(index) + ": "); for (int i = path.size() - 1; i >= 0; i--) System.out.print(path.get(i) + " "); } /** Print the whole tree */ public void printTree() { System.out.println("Root is: " + vertices.get(root)); System.out.print("Edges: "); for (int i = 0; i < parent.length; i++) { if (parent[i] != -1) { // Display an edge System.out.print("(" + vertices.get(parent[i]) + ", " + vertices.get(i) + ") "); } } System.out.println(); } } } interface Graph<V> { /** Return the number of vertices in the graph */ public int getSize(); /** Return the vertices in the graph */ public java.util.List<V> getVertices(); /** Return the object for the specified vertex index */ public V getVertex(int index); /** Return the index for the specified vertex object */ public int getIndex(V v); /** Return the neighbors of vertex with the specified index */ public java.util.List<Integer> getNeighbors(int index); /** Return the degree for a specified vertex */ public int getDegree(int v); /** Print the edges */ public void printEdges(); /** Clear graph */ public void clear(); /** Add a vertex to the graph */ public void addVertex(V vertex); /** Add an edge to the graph */ public void addEdge(int u, int v); /** Obtain a depth-first search tree */ public AbstractGraph<V>.Tree dfs(int v); /** Obtain a breadth-first search tree */ public AbstractGraph<V>.Tree bfs(int v); } }
No comments:
Post a Comment