26.1 (Display AVL tree graphically) Write a program that displays an AVL tree along with its balance factor for each node.
import java.awt.*; import java.awt.event.*; import java.util.LinkedList; import java.util.ArrayList; import javax.swing.*; public class Exercise01 extends JPanel { private static final long serialVersionUID = 1L; private AVLTree<Integer> tree; // A binary tree to be displayed private JTextField jtfKey = new JTextField(5); private TreeView view = new TreeView(); private JButton jbtInsert = new JButton("Insert"); private JButton jbtDelete = new JButton("Delete"); public static void main(String[] args) { JFrame frame = new JFrame("Exercise01"); JApplet applet = new DisplayBST(); frame.add(applet); frame.setSize(500, 300); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setLocationRelativeTo(null); frame.setVisible(true); } static class DisplayBST extends JApplet { private static final long serialVersionUID = 1L; public DisplayBST() { add(new Exercise01(new AVLTree<Integer>())); } } /** Construct a view for a binary tree */ public Exercise01(AVLTree<Integer> tree) { this.tree = tree; setUI(); } /** Initialize UI for binary tree */ private void setUI() { this.setLayout(new BorderLayout()); add(view, BorderLayout.CENTER); JPanel panel = new JPanel(); panel.add(new JLabel("Enter a key: ")); panel.add(jtfKey); panel.add(jbtInsert); panel.add(jbtDelete); add(panel, BorderLayout.SOUTH); jbtInsert.addActionListener(new ActionListener() { @Override // Process the Insert button event public void actionPerformed(ActionEvent e) { int key = Integer.parseInt(jtfKey.getText()); if (tree.search(key)) { // key is in the tree already JOptionPane.showMessageDialog(null, key + " is already in the tree"); jtfKey.requestFocus(); } else { jtfKey.setText(""); tree.insert(key); // Insert a new key view.repaint(); // Redisplay the tree jtfKey.requestFocus(); } } }); jbtDelete.addActionListener(new ActionListener() { @Override // Process the Delete button event public void actionPerformed(ActionEvent e) { int key = Integer.parseInt(jtfKey.getText()); if (!tree.search(key)) { // key is not in the tree JOptionPane.showMessageDialog(null, key + " is not in the tree"); jtfKey.requestFocus(); } else { jtfKey.setText(""); tree.delete(key); // Delete a key view.repaint(); // Redisplay the tree jtfKey.requestFocus(); } } }); } // Inner class TreeView for displaying a tree on a panel class TreeView extends JPanel { private static final long serialVersionUID = 1L; private int radius = 20; // Tree node radius private int vGap = 50; // Gap between two levels in a tree @Override protected void paintComponent(Graphics g) { super.paintComponent(g); if (tree.getRoot() != null) { // Display tree recursively displayTree(g, tree.getRoot(), getWidth() / 2, 30, getWidth() / 4); } } /** Display a subtree rooted at position (x, y) */ private void displayTree(Graphics g, BST.TreeNode<Integer> root, int x, int y, int hGap) { g.drawOval(x - radius, y - radius, 2 * radius, 2 * radius); g.drawString(root.element + "", x - 6, y + 4); g.drawString(tree.balanceFactor((AVLTree.AVLTreeNode<Integer>)(root)) + "", x - 6, y + radius + 15); if (root.left != null) { // Draw a line to the left node connectTwoCircles(g, x - hGap, y + vGap, x, y); // Draw the left subtree recursively displayTree(g, root.left, x - hGap, y + vGap, hGap / 2); } if (root.right != null) { // Draw a line to the right node connectTwoCircles(g, x + hGap, y + vGap, x, y); // Draw the right subtree recursively displayTree(g, root.right, x + hGap, y + vGap, hGap / 2); } } /** Connect two circles centered at (x1, y1) and (x2, y2) */ private void connectTwoCircles(Graphics g, int x1, int y1, int x2, int y2) { double d = Math.sqrt(vGap * vGap + (x2 - x1) * (x2 - x1)); int x11 = (int) (x1 - radius * (x1 - x2) / d); int y11 = (int) (y1 - radius * (y1 - y2) / d); int x21 = (int) (x2 + radius * (x1 - x2) / d); int y21 = (int) (y2 + radius * (y1 - y2) / d); g.drawLine(x11, y11, x21, y21); } } static class AVLTree<E extends Comparable<E>> extends BST<E> { /** Create a default AVL tree */ public AVLTree() { } /** Create an AVL tree from an array of objects */ public AVLTree(E[] objects) { super(objects); } @Override /** Override createNewNode to create an AVLTreeNode */ protected AVLTreeNode<E> createNewNode(E e) { return new AVLTreeNode<E>(e); } @Override /** Insert an element and rebalance if necessary */ public boolean insert(E e) { boolean successful = super.insert(e); if (!successful) return false; // e is already in the tree else { balancePath(e); // Balance from e to the root if necessary } return true; // e is inserted } /** Update the height of a specified node */ private void updateHeight(AVLTreeNode<E> node) { if (node.left == null && node.right == null) // node is a leaf node.height = 0; else if (node.left == null) // node has no left subtree node.height = 1 + ((AVLTreeNode<E>) (node.right)).height; else if (node.right == null) // node has no right subtree node.height = 1 + ((AVLTreeNode<E>) (node.left)).height; else node.height = 1 + Math.max( ((AVLTreeNode<E>) (node.right)).height, ((AVLTreeNode<E>) (node.left)).height); } /** * Balance the nodes in the path from the specified node to the root if * necessary */ private void balancePath(E e) { java.util.ArrayList<TreeNode<E>> path = path(e); for (int i = path.size() - 1; i >= 0; i--) { AVLTreeNode<E> A = (AVLTreeNode<E>) (path.get(i)); updateHeight(A); AVLTreeNode<E> parentOfA = (A == root) ? null : (AVLTreeNode<E>) (path.get(i - 1)); switch (balanceFactor(A)) { case -2: if (balanceFactor((AVLTreeNode<E>) A.left) <= 0) { balanceLL(A, parentOfA); // Perform LL rotation } else { balanceLR(A, parentOfA); // Perform LR rotation } break; case +2: if (balanceFactor((AVLTreeNode<E>) A.right) >= 0) { balanceRR(A, parentOfA); // Perform RR rotation } else { balanceRL(A, parentOfA); // Perform RL rotation } } } } /** Return the balance factor of the node */ private int balanceFactor(AVLTreeNode<E> node) { if (node.right == null) // node has no right subtree return -node.height; else if (node.left == null) // node has no left subtree return +node.height; else return ((AVLTreeNode<E>) node.right).height - ((AVLTreeNode<E>) node.left).height; } /** Balance LL (see Figure 9.1) */ private void balanceLL(TreeNode<E> A, TreeNode<E> parentOfA) { TreeNode<E> B = A.left; // A is left-heavy and B is left-heavy if (A == root) { root = B; } else { if (parentOfA.left == A) { parentOfA.left = B; } else { parentOfA.right = B; } } A.left = B.right; // Make T2 the left subtree of A B.right = A; // Make A the left child of B updateHeight((AVLTreeNode<E>) A); updateHeight((AVLTreeNode<E>) B); } /** Balance LR (see Figure 9.1(c)) */ private void balanceLR(TreeNode<E> A, TreeNode<E> parentOfA) { TreeNode<E> B = A.left; // A is left-heavy TreeNode<E> C = B.right; // B is right-heavy if (A == root) { root = C; } else { if (parentOfA.left == A) { parentOfA.left = C; } else { parentOfA.right = C; } } A.left = C.right; // Make T3 the left subtree of A B.right = C.left; // Make T2 the right subtree of B C.left = B; C.right = A; // Adjust heights updateHeight((AVLTreeNode<E>) A); updateHeight((AVLTreeNode<E>) B); updateHeight((AVLTreeNode<E>) C); } /** Balance RR (see Figure 9.1(b)) */ private void balanceRR(TreeNode<E> A, TreeNode<E> parentOfA) { TreeNode<E> B = A.right; // A is right-heavy and B is right-heavy if (A == root) { root = B; } else { if (parentOfA.left == A) { parentOfA.left = B; } else { parentOfA.right = B; } } A.right = B.left; // Make T2 the right subtree of A B.left = A; updateHeight((AVLTreeNode<E>) A); updateHeight((AVLTreeNode<E>) B); } /** Balance RL (see Figure 9.1(d)) */ private void balanceRL(TreeNode<E> A, TreeNode<E> parentOfA) { TreeNode<E> B = A.right; // A is right-heavy TreeNode<E> C = B.left; // B is left-heavy if (A == root) { root = C; } else { if (parentOfA.left == A) { parentOfA.left = C; } else { parentOfA.right = C; } } A.right = C.left; // Make T2 the right subtree of A B.left = C.right; // Make T3 the left subtree of B C.left = A; C.right = B; // Adjust heights updateHeight((AVLTreeNode<E>) A); updateHeight((AVLTreeNode<E>) B); updateHeight((AVLTreeNode<E>) C); } @Override /** Delete an element from the binary tree. * Return true if the element is deleted successfully * Return false if the element is not in the tree */ public boolean delete(E element) { if (root == null) return false; // Element is not in the tree // Locate the node to be deleted and also locate its parent node TreeNode<E> parent = null; TreeNode<E> current = root; while (current != null) { if (element.compareTo(current.element) < 0) { parent = current; current = current.left; } else if (element.compareTo(current.element) > 0) { parent = current; current = current.right; } else break; // Element is in the tree pointed by current } if (current == null) return false; // Element is not in the tree // Case 1: current has no left children (See Figure 23.6) if (current.left == null) { // Connect the parent with the right child of the current node if (parent == null) { root = current.right; } else { if (element.compareTo(parent.element) < 0) parent.left = current.right; else parent.right = current.right; // Balance the tree if necessary balancePath(parent.element); } } else { // Case 2: The current node has a left child // Locate the rightmost node in the left subtree of // the current node and also its parent TreeNode<E> parentOfRightMost = current; TreeNode<E> rightMost = current.left; while (rightMost.right != null) { parentOfRightMost = rightMost; rightMost = rightMost.right; // Keep going to the right } // Replace the element in current by the element in rightMost current.element = rightMost.element; // Eliminate rightmost node if (parentOfRightMost.right == rightMost) parentOfRightMost.right = rightMost.left; else // Special case: parentOfRightMost is current parentOfRightMost.left = rightMost.left; // Balance the tree if necessary balancePath(parentOfRightMost.element); } size--; return true; // Element inserted } /** AVLTreeNode is TreeNode plus height */ protected static class AVLTreeNode<E extends Comparable<E>> extends BST.TreeNode<E> { protected int height = 0; // New data field public AVLTreeNode(E o) { super(o); } } } static class BST<E extends Comparable<E>> extends AbstractTree<E> { protected TreeNode<E> root; protected int size = 0; public void inorder2() { if (root == null) { return; } LinkedList<TreeNode<E>> list = new LinkedList<>(); LinkedList<TreeNode<E>> stack = new LinkedList<>(); stack.add(root); while (!stack.isEmpty()) { TreeNode<E> node = stack.getFirst(); if ((node.left != null) && (!list.contains(node.left))) { stack.push(node.left); } else { stack.removeFirst(); list.add(node); if (node.right != null) { stack.addFirst(node.right); } } } for (TreeNode<E> treeNode : list) { System.out.print(treeNode.element + " "); } } public boolean isFullBST() { return size == Math.round(Math.pow(2, height()) - 1); } /** * Returns the height of this binary tree, i.e., the number of the nodes * in the longest path of the root to a leaf */ public int height() { return height(root); } public int height(TreeNode<E> node) { if (node == null) { return 0; } else { return 1 + Math.max(height(node.left), height(node.right)); } } /** Create a default binary tree */ public BST() { } /** Create a binary tree from an array of objects */ public BST(E[] objects) { for (int i = 0; i < objects.length; i++) insert(objects[i]); } /** Returns true if the element is in the tree */ public ArrayList<E> searchPath(E e) { TreeNode<E> current = root; // Start from the root ArrayList<E> result = new ArrayList<>(); while (current != null) { result.add(current.element); if (e.compareTo(current.element) < 0) { current = current.left; } else if (e.compareTo(current.element) > 0) { current = current.right; } else { return result; } } return null; } @Override /** Returns true if the element is in the tree */ public boolean search(E e) { TreeNode<E> current = root; // Start from the root while (current != null) { if (e.compareTo(current.element) < 0) { current = current.left; } else if (e.compareTo(current.element) > 0) { current = current.right; } else // element matches current.element return true; // Element is found } return false; } @Override /** Insert element o into the binary tree * Return true if the element is inserted successfully */ public boolean insert(E e) { if (root == null) root = createNewNode(e); // Create a new root else { // Locate the parent node TreeNode<E> parent = null; TreeNode<E> current = root; while (current != null) if (e.compareTo(current.element) < 0) { parent = current; current = current.left; } else if (e.compareTo(current.element) > 0) { parent = current; current = current.right; } else return false; // Duplicate node not inserted // Create the new node and attach it to the parent node if (e.compareTo(parent.element) < 0) parent.left = createNewNode(e); else parent.right = createNewNode(e); } size++; return true; // Element inserted } protected TreeNode<E> createNewNode(E e) { return new TreeNode<E>(e); } @Override /** Inorder traversal from the root*/ public void inorder() { inorder(root); } /** Inorder traversal from a subtree */ protected void inorder(TreeNode<E> root) { if (root == null) return; inorder(root.left); System.out.print(root.element + " "); inorder(root.right); } @Override /** Postorder traversal from the root */ public void postorder() { postorder(root); } /** Postorder traversal from a subtree */ protected void postorder(TreeNode<E> root) { if (root == null) return; postorder(root.left); postorder(root.right); System.out.print(root.element + " "); } @Override /** Preorder traversal from the root */ public void preorder() { preorder(root); } /** Preorder traversal from a subtree */ protected void preorder(TreeNode<E> root) { if (root == null) return; System.out.print(root.element + " "); preorder(root.left); preorder(root.right); } /** * This inner class is static, because it does not access any instance * members defined in its outer class */ public static class TreeNode<E extends Comparable<E>> { protected E element; protected TreeNode<E> left; protected TreeNode<E> right; public TreeNode(E e) { element = e; } } @Override /** Get the number of nodes in the tree */ public int getSize() { return size; } /** Returns the root of the tree */ public TreeNode<E> getRoot() { return root; } /** Returns a path from the root leading to the specified element */ public java.util.ArrayList<TreeNode<E>> path(E e) { java.util.ArrayList<TreeNode<E>> list = new java.util.ArrayList<TreeNode<E>>(); TreeNode<E> current = root; // Start from the root while (current != null) { list.add(current); // Add the node to the list if (e.compareTo(current.element) < 0) { current = current.left; } else if (e.compareTo(current.element) > 0) { current = current.right; } else break; } return list; // Return an array of nodes } @Override /** Delete an element from the binary tree. * Return true if the element is deleted successfully * Return false if the element is not in the tree */ public boolean delete(E e) { // Locate the node to be deleted and also locate its parent node TreeNode<E> parent = null; TreeNode<E> current = root; while (current != null) { if (e.compareTo(current.element) < 0) { parent = current; current = current.left; } else if (e.compareTo(current.element) > 0) { parent = current; current = current.right; } else break; // Element is in the tree pointed at by current } if (current == null) return false; // Element is not in the tree // Case 1: current has no left children if (current.left == null) { // Connect the parent with the right child of the current node if (parent == null) { root = current.right; } else { if (e.compareTo(parent.element) < 0) parent.left = current.right; else parent.right = current.right; } } else { // Case 2: The current node has a left child // Locate the rightmost node in the left subtree of // the current node and also its parent TreeNode<E> parentOfRightMost = current; TreeNode<E> rightMost = current.left; while (rightMost.right != null) { parentOfRightMost = rightMost; rightMost = rightMost.right; // Keep going to the right } // Replace the element in current by the element in rightMost current.element = rightMost.element; // Eliminate rightmost node if (parentOfRightMost.right == rightMost) parentOfRightMost.right = rightMost.left; else // Special case: parentOfRightMost == current parentOfRightMost.left = rightMost.left; } size--; return true; // Element inserted } @Override /** Obtain an iterator. Use inorder. */ public java.util.Iterator<E> iterator() { return new InorderIterator(); } // Inner class InorderIterator private class InorderIterator implements java.util.Iterator<E> { // Store the elements in a list private java.util.ArrayList<E> list = new java.util.ArrayList<E>(); private int current = 0; // Point to the current element in list public InorderIterator() { inorder(); // Traverse binary tree and store elements in list } /** Inorder traversal from the root */ private void inorder() { inorder(root); } /** Inorder traversal from a subtree */ private void inorder(TreeNode<E> root) { if (root == null) return; inorder(root.left); list.add(root.element); inorder(root.right); } @Override /** More elements for traversing? */ public boolean hasNext() { if (current < list.size()) return true; return false; } @Override /** Get the current element and move to the next */ public E next() { return list.get(current++); } @Override /** Remove the current element */ public void remove() { delete(list.get(current)); // Delete the current element list.clear(); // Clear the list inorder(); // Rebuild the list } } /** Remove all elements from the tree */ public void clear() { root = null; size = 0; } } static abstract class AbstractTree<E> implements Tree<E> { @Override /** Inorder traversal from the root*/ public void inorder() { } @Override /** Postorder traversal from the root */ public void postorder() { } @Override /** Preorder traversal from the root */ public void preorder() { } @Override /** Return true if the tree is empty */ public boolean isEmpty() { return getSize() == 0; } @Override /** Return an iterator for the tree */ public java.util.Iterator<E> iterator() { return null; } } interface Tree<E> extends Iterable<E> { /** Return true if the element is in the tree */ public boolean search(E e); /** * Insert element o into the binary tree Return true if the element is * inserted successfully */ public boolean insert(E e); /** * Delete the specified element from the tree Return true if the element * is deleted successfully */ public boolean delete(E e); /** Inorder traversal from the root */ public void inorder(); /** Postorder traversal from the root */ public void postorder(); /** Preorder traversal from the root */ public void preorder(); /** Get the number of nodes in the tree */ public int getSize(); /** Return true if the tree is empty */ public boolean isEmpty(); public java.util.Iterator<E> iterator(); } }
No comments:
Post a Comment